

ETSI TS 102 853 V1.1.2 (2012-10)

Electronic Signatures and Infrastructures (ESI);
Signature validation procedures and policies

Technical Specification

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)2

Reference
RTS/ESI-000074rev

Keywords
electronic signature, security, trust services

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at

http://portal.etsi.org/tb/status/status.asp

If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2012.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and

of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

http://www.etsi.org/
http://portal.etsi.org/tb/status/status.asp
http://portal.etsi.org/chaircor/ETSI_support.asp

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)3

Contents

Intellectual Property Rights .. 6

Foreword ... 6

Introduction .. 6

1 Scope .. 7

2 References .. 7

2.1 Normative references ... 7

2.2 Informative references .. 8

3 Definitions and abbreviations ... 9

3.1 Definitions .. 9

3.2 Abbreviations ... 10

4 Introduction to signature validation ... 11

4.1 Status indication of the signature validation process .. 11

4.2 Validation Constraints .. 15

4.3 X.509 certificate meta-data .. 16

4.4 Trust Management .. 16

4.5 The concept of revocation freshness .. 16

5 Basic Building Blocks .. 17

5.1 Identification of the Signer's Certificate (ISC) ... 18

5.1.1 Description .. 18

5.1.2 Inputs .. 18

5.1.3 Outputs .. 19

5.1.4 Processing ... 19

5.1.4.1 XAdES processing .. 19

5.1.4.2 CAdES processing .. 19

5.1.4.3 PAdES processing ... 19

5.2 Validation Context Initialization (VCI) .. 20

5.2.1 Description .. 20

5.2.2 Inputs .. 20

5.2.3 Outputs .. 20

5.2.4 Processing ... 20

5.2.4.1 Processing commitment type indication.. 20

5.2.4.1.1 XAdES Processing .. 21

5.2.4.2 Processing Signature Policy Identifier .. 21

5.3 X.509 Certificate Validation (XCV) .. 21

5.3.1 Description .. 21

5.3.2 Inputs .. 22

5.3.3 Outputs .. 22

5.3.4 Processing ... 22

5.4 Cryptographic Verification (CV) ... 23

5.4.1 Description .. 23

5.4.2 Inputs .. 23

5.4.3 Outputs .. 24

5.4.4 Processing ... 24

5.5 Signature Acceptance Validation (SAV) .. 24

5.5.1 Description .. 24

5.5.2 Inputs .. 24

5.5.3 Outputs .. 25

5.5.4 Processing ... 25

5.5.4.1 Processing AdES properties/attributes .. 26

5.5.4.2 Processing signing certificate reference constraint ... 26

5.5.4.3 Processing claimed signing time ... 26

5.5.4.4 Processing signed data object format .. 26

5.5.4.5 Processing indication of production place of the signature ... 26

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)4

5.5.4.6 Processing Time-stamps on signed data objects ... 27

5.5.4.7 Processing Countersignatures ... 27

5.5.4.8 Processing signer attributes/roles .. 27

6 Basic Validation Process .. 27

6.1 Description ... 27

6.2 Inputs .. 28

6.3 Outputs ... 28

6.4 Processing... 28

7 Validation Process for Time-Stamps .. 29

7.1 Description ... 29

7.2 Inputs .. 30

7.3 Outputs ... 30

7.4 Processing... 30

8 Validation Process for AdES-T .. 30

8.1 Description ... 30

8.2 Inputs .. 30

8.3 Outputs ... 31

8.4 Processing... 31

8.4.1 Message Imprint Verification of the signature-timestamp for XAdES ... 32

8.4.2 Message Imprint Verification of the signature-time-stamp for CAdES/PAdES ... 32

9 Validation of LTV forms .. 32

9.1 The concept of Proof Of Existence (POE) ... 33

9.2 Additional Building blocks... 33

9.2.1 Past certificate validation .. 33

9.2.1.1 Description .. 33

9.2.1.2 Input .. 34

9.2.1.3 Output ... 34

9.2.1.4 Processing ... 34

9.2.2 Control-time sliding process ... 34

9.2.2.1 Description .. 34

9.2.2.2 Input .. 35

9.2.2.3 Output ... 35

9.2.2.4 Processing ... 35

9.2.3 POE extraction .. 36

9.2.3.1 Description .. 36

9.2.3.2 Input .. 36

9.2.3.3 Output ... 36

9.2.3.4 Processing ... 36

9.2.3.4.1 Extraction from a time-stamp on the signature .. 37

9.2.3.4.2 Extraction from a time-stamp on certificates and revocation references ... 37

9.2.3.4.3 Extraction from a time-stamp on the signature and certificates and revocation references 37

9.2.3.4.4 Extraction from an archive-time-stamp ... 37

9.2.3.4.5 Extraction from a long-term-validation attribute ... 37

9.2.3.4.6 Extraction from a PDF document time-stamp ... 38

9.2.4 Past signature validation process .. 38

9.2.4.1 Description .. 38

9.2.4.2 Input .. 38

9.2.4.3 Output ... 38

9.2.4.4 Processing ... 39

9.3 Long Term Validation Process ... 39

9.3.1 Description .. 39

9.3.2 Input .. 40

9.3.3 Output ... 40

9.3.4 Processing ... 40

Annex A (informative): Validation Constraints .. 43

A.1 X.509 Certificate path validation constraints ... 43

A.2 Constraints on X.509 Certificate meta-data ... 45

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)5

A.3 Cryptographic Constraints .. 46

A.4 Constraints on Signature Elements ... 46

Annex B (informative): Certificate Meta-Data .. 47

Annex C (informative): Validation Examples .. 48

C.1 General remarks and assumptions .. 48

C.2 Symbols .. 49

C.3 Example 1: Revoked certificate ... 49

C.3.1 AdES-BES/EPES ... 50

C.3.2 AdES-T .. 50

C.4 Example 2: Revoked CA certificate ... 51

C.4.1 AdES-BES/EPES ... 51

C.4.2 AdES-T .. 52

C.4.3 LTV .. 52

Annex D (informative): Validation process versus signature conformance levels............................ 55

History .. 56

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)6

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in
respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web
server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web
server) which are, or may be, or may become, essential to the present document.

Foreword
This Technical Specification (TS) has been produced by ETSI Technical Committee Electronic Signatures and
Infrastructures (ESI).

Introduction
The present document defines an algorithm to validate electronic signatures, with special consideration on signature
validation of "old" electronic signatures, where certificates may have expired or been revoked or even the usage period
of algorithms have been exceeded. It does so by capitalizing on security measures that have been applied by e.g. the
signer or previous verifiers and ensures that such signatures still can be validated. It is agnostic to the type of security
measures; while it is primarily aiming at Advanced Electronic Signatures, which provide such features intrinsically, but
it also allows for variations, like classical archiving services, where the security measures may also be
non-cryptographic.

The way the algorithm is presented aims at clarity and understandability. It is not assumed, nor recommended, that the
algorithm will be implemented as described. Efficiency and other implementational aspects were not considered. A
conformant implementation will provide the same results, however, as the algorithm here would. An efficient
implementation will need to reorder steps in algorithms, use caching of results wherever possible and do things in
parallel, if possible.

Signature validation is driven by a signature validation policy. The algorithm presented here supports such policies. It is
assumed that the validator, represented by the driving application, provides such a policy in possibly different forms - as
a formal policy, as a set of configuration parameters, or by the way the algorithm has been implemented.

To avoid confusing terms, the term constraint is used for a single policy rule that influences decisions made by the
algorithm. A formal signature policy, as specified in [i.3], can provide a set of constraints, which may be used
exclusively or may be combined with other constraints (e.g. coming from local configuration).

http://webapp.etsi.org/IPR/home.asp

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)7

1 Scope
The present document specifies procedures for establishing whether an electronic signature is technically valid based on
the considerations specified in the present document and the validation constraints are applied to the verification
procedures. These constraints may be specified as part of a formal signature policy.

It is outside the scope of the present document as to whether a signature is accepted by the relying party and specifically
if it bears legal validity.

NOTE 1: Factors outside the scope of the present document, such as delays in reporting revocations or unintended
data errors in a document, may impact on the signature and so may need to be taken into account in
considering the technical validity of a signature in case of dispute.

NOTE 2: The present document makes use of certain verbal forms (e.g. may, shall, shall not and should) as key
words to signify requirements, conforming to ETSI Drafting Rules, clause 14a [i.8].

2 References
References are either specific (identified by date of publication and/or edition number or version number) or
non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the
reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at
http://docbox.etsi.org/Reference.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee
their long term validity.

2.1 Normative references
The following referenced documents are necessary for the application of the present document.

[1] ETSI TS 101 903 (V1.4.2): "Electronic Signatures and Infrastructures (ESI); XML Advanced
Electronic Signatures (XAdES)".

[2] ETSI TS 101 733 (V2.1.1): "Electronic Signatures and Infrastructures (ESI); CMS Advanced
Electronic Signatures (CAdES)".

[3] ETSI TS 102 231: "Electronic Signatures and Infrastructures (ESI); Provision of harmonized
Trust-service status Information".

[4] IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile".

[5] ETSI TS 101 862: "Qualified certificate Profile".

[6] ISO/IEC 9594-8:2008: "Information technology -- Open Systems Interconnection --
The Directory: Public-key and attribute certificate frameworks".

[7] ETSI TS 101 456: "Electronic Signatures and Infrastructures (ESI); Policy requirements for
certification authorities issuing qualified certificates".

[8] ETSI TS 102 042: "Electronic Signatures and Infrastructures (ESI); Policy requirements for
certification authorities issuing public key certificates".

[9] Directive 1999/93/EC of the European Parliament and of the Council of 13 December 1999 on a
Community framework for electronic signatures.

[10] W3C Recommendation (2008): "XML Signature Syntax and Processing".

http://docbox.etsi.org/Reference

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)8

[11] IETF RFC 3161: "Internet X.509 Public Key Infrastructure; Time Stamp Protocol (TSP)".

[12] ETSI TS 102 778-1: "Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic
Signature Profiles; Part 1: PAdES Overview - a framework document for PAdES".

[13] ETSI TS 102 778-3: "Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic
Signature Profiles; Part 3: PAdES Enhanced - PAdES-BES and PAdES-EPES Profiles".

[14] ETSI TS 102 778-4: "Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic
Signature Profiles; Part 4: PAdES Long Term - PAdES LTV Profile".

[15] ETSI TS 102 778-5: "Electronic Signatures and Infrastructures (ESI); PDF Advanced Electronic
Signature Profiles; Part 5: PAdES for XML Content - Profiles for XAdES signatures".

[16] IETF RFC 3852: "Cryptographic Message Syntax (CMS)".

[17] IETF RFC 4998: "Evidence Record Syntax (ERS)".

[18] ETSI TS 103 171: "Electronic Signatures and Infrastructures (ESI); XAdES Baseline Profile".

[19] ETSI TS 103 172: "Electronic Signatures and Infrastructures (ESI); PAdES Baseline Profile".

[20] ETSI TS 103 173: "Electronic Signatures and Infrastructures (ESI); CAdES Baseline Profile".

2.2 Informative references
The following referenced documents are not necessary for the application of the present document but they assist the
user with regard to a particular subject area.

[i.1] IETF RFC 4158: "Internet X.509 Public Key Infrastructure: Certification Path Building".

[i.2] ETSI TR 102 272: "Electronic Signatures and Infrastructures (ESI); ASN.1 format for signature
policies".

[i.3] ETSI TR 102 038: "TC Security - Electronic Signatures and Infrastructures (ESI); XML format for
signature policies".

[i.4] "Certificate Validation: back to the past", Moez Ben MBarka and Julien Stern, EuroPKI 2011,
15-16 September 2011, Leuven - Belgium.

[i.5] ECRYPT II Yearly Report on Algorithms and Keysizes (2010-2011), Revision 1.0, 30. June 2011.

[i.6] Commission Decision 2009/767/EC amended by Commission Decision 2010/425/EU.

[i.7] Directive 2006/123/EC of the European Parliament and of the Council of 12 December 2006 on
services in the internal market.

[i.8] ETSI Drafting Rules (EDRs).

NOTE: Contained in the ETSI Directives: http://portal.etsi.org/Directives/home.asp.

[i.9] IETF RFC 2560: "X.509 Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP".

[i.10] ETSI SR 001 604: "Rationalised Framework for Electronic Signature Standardisation".

http://portal.etsi.org/Directives/home.asp

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)9

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

Advanced Electronic Signature (AdES): advanced electronic signature means an electronic signature that meets the
following requirements [9]:

1) it is uniquely linked to the signatory;

2) it is capable of identifying the signatory;

3) it is created using means that the signatory can maintain under his sole control; and

4) it is linked to the data to which it relates in such a manner that any subsequent change of the data is detectable.

NOTE: In the rest of the present document the term "signature" is used to denote an Advanced Electronic
Signature.

certificate path (chain) validation: process of checking that a certificate path (chain) is valid

certificate validation: process of checking that a certificate or certificate path is valid

constraints: abstract formulation of rules, values, ranges and computation results that a Signature, as defined above,
can be validated against

data to be signed: data (e.g. a document or parts of a document) to be signed as well as any signature attributes that are
bound together with the data by the signature

NOTE: Data To Be Signed is the input to the cryptographic signing algorithm. The specific way that Data to be
Signed and any signature attributes are fed as input is defined in the specification for the signature type
used.

Driving Application (DA): application that calls the SVA in order to validate electronic signatures

NOTE: The SVA returns the validation result to the DA.

Long Term Validation (LTV): ability to validate signatures many years after the signing took place, even if e.g.
certificates used in the signature have expired or revoked or algorithms used have been broken

Proof Of Existence (POE): evidence that proves that an object (a certificate, a CRL, signature value, hash value, etc.)
existed at a specific date/time, which may be a date/time in the past

signature policy: set of rules for the creation and validation of an electronic signature, under which the signature can be
determined to be valid in a particular transactions context

signature type: specific format for encoding an advanced electronic signature including its attributes

signature validation: process of checking that a signature is valid including overall checks of the signature against
local or shared signature policy requirements as well as certificate validation and signature verification

Signature Validation Application (SVA): application that implements the signature validation processes defined in
the present document

NOTE: The Signature Validation Application takes inputs from and provides validation results to a Driving
Application (DA).

signature validation policy: set of rules (constraints) that specify how to validate the signature

signature verification: process of checking the cryptographic value of a signature using signature verification data

signed data object (s): document(s) or parts of the document(s) for which an electronic signature has been generated,
along with the electronic signature

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)10

validation constraint: criterion, applied by an SVA when validating an electronic signature

NOTE: Validation constraints may be defined in a formal signature policy, may be given in configuration files or
implied by the behaviour of the SVA.

validation data: additional data, collected by the signer and/or a verifier, needed to validate the electronic signature

NOTE: It may include: certificates, revocation status information (such as CRLs or OCSP-Responses),
time-stamps or time-marks.

verifier: entity that wants to validate or verify an electronic signature

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

AdES Advanced Electronic Signature
BES Basic Electronic Signature
CA Certification Authority
CAdES CMS Advanced Electronic Signatures
CD Commission Decision
CRL Certificate Revocation List
CV Cryptographic Verification
DA Driving Application
DN Distinguished Name
EC European Commission
EPES Explicit Policy-based Electronic Signature
ERS Evidence Record Syntax
IP Internet Protcol
ISC Identification of the Signer's Certificate
LCP Lightweight Certificate Policy
LDAP Lightweight Directory Access Protocol
LT Long Term
LTA Long-Term with Archive Time Stamp
LTV Long Term Validation
NCP Normalized Certificate Policy
NO_POE NO Proof Of Existence
OCSP Online Certificate Status Provider
OID Object Identifier
PAdES PDF Advanced Electronic Signatures
PKIX Public Key Infrastructure X. 509
POE Proof Of Existence
QCP Qualified Certificate Policy
RFC Request For Comment
RSA Rivest-Shamir-Adleman
SAV Signature Acceptance Validation
SSCD Secure Signature Creation Device
ST Short-Term
SVA Signature Validation Application
TA Trust Anchor
TSA Time Stamping Authority
TSL Trust-service Status List
TST Time-Stamp Token
URI Uniform Resource Identifier
VCI Validation Context Initialisation
XAdES XML Advanced Electronic Signatures
XCV X.509 Certificate Validation
XL Extended Long electronic signature
XML Extendable Mark-up Language

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)11

4 Introduction to signature validation
A signature validation application (SVA) validates an electronic signature against a set of validation constraints and
outputs a validation report. This report consists of a status indication accompanied by additional data items, providing
the details of the technical validation of each of the applicable constraints. The report may include additional
information (e.g. explanations and other information to be displayed) that has been found relevant by the SVA and may
be relevant for the driving application (DA) in interpreting the results. The output of the SVA is meant to be processed
by the DA (e.g. to be displayed to the verifier).

The set of validation constraints used for validation may force the SVA to ignore any condition that otherwise would,
according to the present document, require an INVALID or INDETERMINATE result. E.g. if validation constraints
force the SVA to ignore revocation status of intermediate certificates, the SVA will return VALID, even if it should
return INDETERMINATE. Such overruling by the policy is in theory possible for all decisions made by the present
document and cannot be mentioned in all places they may appear. The SVA shall report such decisions in the validation
report.

Checking that the signature to validate is conformant to the applicable format (e.g. CMS/CAdES, XML-DSig/XAdES,
etc.) shall be done by the SVA prior to any subsequent processing. In case the signature is not conformant to the
required format, the SVA shall fail with INVALID/FORMAT_FAILURE together with details about the format error(s).
While some of these format checks are detailed in the present document (when they are relevant to a specific validation
step), format checking is out of the scope of the present document. These checks include checking that the syntax of the
signature is conformant to the appropriate specification but also any additional checking mandated by that specification
for specific signature attributes (e.g. checking that what is time-stamped by a time-stamp token in the signature is really
what shall be time-stamped according to the appropriate specification).

The present document does not stipulate any required behaviour by the DA, especially no processing requirements for
any of the returned information, since this is application specific and out of the scope of the present document. It is
however recommended that:

• If SVA returns VALID for a certain signature, DA should consider the signature as a valid signature according
to the validation constraints. This does not necessarily mean that the signature is useful for a particular
purpose.

• If SVA returns INVALID or INDETERMINATE, the DA should not consider the signature as a valid
signature. In case of INDETERMINATE, the DA may retry verification based on additional information or at
a later point of time.

The present document presents the validation process in the form of algorithms to be implemented by a conforming
signature validation application. Conforming implementations however are not required to implement these algorithms
but shall provide behaviour that is functionally equivalent.

The validation constraints against which the signature has to be validated can originate from different sources:

• The signature content itself, either directly (included in the signature or signed attributes) or indirectly, i.e. by
reference to an external document, provided either in a human readable and/or machine processable form.

• A local source from the verifier (e.g. configuration file, (machine processable) signature validation policy).

4.1 Status indication of the signature validation process
With regards to the validation report, Table 1 lists the possible values of the main status indication and their semantics.
The DA can present the report in a way meaningful to the verifier. In all cases, the signature validation process shall
output an indication of the policy or set of constraints against which the signature has been validated and may output
additional data items extracted from the signature.

For the certificate chain validation algorithm, the following assumptions are made:

1) If an intermediate certificate in a chain is revoked, and if no "better" chain can be found, a conformant SVA
shall return INDETERMINATE, since another chain may exist (that the SVA cannot build due to missing
certificates).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)12

2) If a valid chain has been found (certificate path validation procedures defined in [4], clause 6 were successful
and none of the intermediate certificates has been revoked) and the signer's certificate is revoked, the chain
validation algorithm shall return INDETERMINATE/REVOKED_NO_POE.

NOTE 1: This does not mean that the overall signature validation result will be INVALID. Long term validation
may still find the signature to be valid at the time of signing.

Indications returned by SVAs shall conform to the following rules:

• When the result is due to be VALID or INVALID:

a) Any execution of a conformant SVA with the same inputs will return VALID or INVALID, respectively.

b) Any execution of a conformant SVA with the same inputs + additional validation data (e.g. more
certificates) will return the same result as it has returned in a) (i.e. VALID or INVALID).

• When the result is due to be INDETERMINATE:

a) Any execution of a conformant SVA with the same inputs will return INDETERMINATE.

b) Any execution of a conformant SVA with the same inputs + additional validation data will return
VALID, INVALID or INDETERMINATE.

NOTE 2: The date/time at which the conformant SVA is executed is an implicit input to the validation process.
Subsequent executions of the SVA may give different results in case additional data becomes available
(e.g. new certificate status information).

NOTE 3: The term "same inputs" includes the validation constraints to be used. Different validation constraints will
in general result in different validation results.

NOTE 4: The status indicators VALID, INVALID and INDETERMINATE are also used in the building blocks
specified in the following clauses. For the building-blocks, these statuses only represent the result of the
operation performed in the block and not necessarily the result of the overall signature validation. Any
sub-indicators used in the building blocks have the semantics of the sub-indicators in Table 2.

Table 1: Status indications of the signature validation process

Status indication Semantics Associated Validation report data
VALID The signature is technically valid based on the

following considerations:
• The signature is cryptographically valid, and
• Any constraints applicable to the signer's identity

certification have been positively validated
(i.e. the signer's certificate consequently has
been found trustworthy), and

• The signature has been positively validated
against the validation constraints and hence is
considered conformant to these constraints.

The validation process shall output the
following:

• For each of the validation
constraints, the result of the
validation.

• The validated certificate chain,
including the signer's certificate,
used in the validation process.

INVALID The signature is invalid based on the failure of at least
one of the above considerations.

The validation process shall output
additional information to explain the
INVALID indication for each of the
validation constraints that have been
taken into account and for which a
negative result occurred.

INDETERMINATE The available information is insufficient to ascertain the
signature to be VALID or INVALID.

The validation process shall output
additional information to explain the
INDETERMINATE indication and to
help the Verifier to identify what data is
missing to complete the validation
process. In particular it shall provide
validation result indications for at least
those validation constraints that have
been taken into account and for which
an indeterminate result occurred.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)13

Table 2 gives a recommended structure for the validation report data associated to the INVALID and INDETERMINATE
indications status resulting from the validation of an electronic signature by listing the main sub codes to be returned by
the validation process.

Table 2: Validation Report Structure

Main indication Sub indication Semantics Associated Validation
report data

INVALID REVOKED The signature is considered invalid
because:
• The signer's certificate has been

found to be revoked and
• The Signature Validation

Algorithm can ascertain that the
signing time lies after the
revocation time.

The validation process shall
provide the following:
• The certificate chain

used in the validation
process.

• The time and the reason
of revocation of the
signer's certificate.

 HASH_FAILURE The signature is considered invalid
because at least one hash of a signed
data object(s) that has been included
in the signing process does not match
the corresponding hash value in the
signature.

The validation process shall
provide:
• An identifier (s) (e.g. an

URI) uniquely identifying
the signed data object
that caused the failure.

 SIG_CRYPTO_FAILURE The signature is considered invalid
because the signature value in the
signature could not be verified using
the signer's public key in the signer's
certificate.

The validation process shall
output:
• The signer certificate

used in the validation
process.

 SIG_CONSTRAINTS_
FAILURE

The signature is considered invalid
because one or more properties of
the signature do not match the
validation constraints.

The validation process shall
provide:
• The set of constraints

that have not been met
by the signature.

 CHAIN_CONSTRAINTS_
FAILURE

The signature is considered invalid
because the certificate chain used in
the validation process does not match
the validation constraints related to
the certificate.

The validation process shall
output:
• The certificate chain

used in the validation
process.

• The set of constraints
that have not been met
by the chain.

 CRYPTO_CONSTRAINTS_
FAILURE

The signature is considered invalid
because at least one of the
algorithms that have been used in a
material (e.g. the signature value, a
certificate...) involved in validating the
signature or the size of the keys used
with such an algorithm is no longer
considered reliable and the Signature
Validation Algorithm can ascertain
that this material was produced after
the time up to which this algorithm
was considered secure.

The process shall output:
• A list of algorithms,

together with the size of
the key, if applicable,
that have been used in
validation of the
signature but no longer
are considered reliable
together with a time up
to which each of the
listed algorithms were
considered secure.

• The list of material
where each of the listed
algorithms were used.

 EXPIRED The signature is considered invalid
because the Signature Validation
Algorithm can ascertain that the
signing time lies after the expiration
date (notAfter) of the signer's
certificate.

The process shall output:
• The validated certificate

chain.

 NOT_YET_VALID The signature is considered invalid
because the Signature Validation
Algorithm can ascertain that the
signing time lies before the issuance
date (notBefore) of the signer's
certificate.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)14

Main indication Sub indication Semantics Associated Validation
report data

 FORMAT_FAILURE The signature has been found not
conformant to one of the base
standards
([1], [2] and [12] to [15]).

 POLICY_PROCESSING_
ERROR

A given formal policy file could not be
processed for any reason (e.g. not
accessible, not parsable, etc.)

The validation process shall
provide additional information
on the problem.

 UNKNOWN_COMMITMENT
_TYPE

The signature was created using a
policy and commitment type that is
unknown to the SVA.

The validation process shall
provide additional information
on the problem.

 TIMESTAMP_ORDER_
FAILURE

Some constraints on the order of
signature time-stamps and/or signed
data object (s) time-stamps are not
respected.

The validation process shall
output the list of time-stamps
that do no respect the
ordering constraints.

 GENERIC Any other reason The validation process shall
output:
• The certificate chain

used in the validation
process.

• Additional information
why the signature has
been declared invalid.

INDETERMINATE NO_SIGNER_CERTIFICATE
_FOUND

The signer's certificate cannot be
identified.

 NO_CERTIFICATE_CHAIN_
FOUND

No certificate chain has been found
for the identified signer's certificate.

 REVOKED_NO_POE The signer's certificate has been
found to be revoked at the validation
date/time. However, the Signature
Validation Algorithm cannot ascertain
that the signing time lies before or
after the revocation time.

The validation process shall
provide the following:
• The certificate chain

used in the validation
process.

• The time and the reason
of revocation of the
signer's certificate.

 REVOKED_CA_NO_POE At least one certificate chain was
found but an intermediate CA
certificate has been found to be
revoked.

The validation process shall
provide the following:
• The certificate chain

which includes the
revoked CA certificate.

• The time and the reason
of revocation of the
certificate.

 OUT_OF_BOUNDS_NO_
POE

The signer's certificate is expired or
not yet valid at the validation
date/time and the Signature
Validation Algorithm cannot ascertain
that the signing time lies within the
validity interval of the signer's
certificate.

 CRYPTO_CONSTRAINTS_
FAILURE_NO_POE

At least one of the algorithms that
have been used in a material (e.g. the
signature value, a certificate...)
involved in validating the signature or
the size of the keys used with such an
algorithm is no longer considered
reliable at the validation date/time.
However, the Signature Validation
Algorithm cannot ascertain that the
concerned material has been
produced before or after the algorithm
or the size of the keys have been
considered not reliable.

The process shall output:
• A list of algorithms,

together with the size of
the key, if applicable,
that have been used in
validation of the
signature but no longer
are considered reliable
together with a time up
to which each of the
listed algorithms were
considered secure.

The list of material where
each of the listed algorithms
were used.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)15

Main indication Sub indication Semantics Associated Validation
report data

 NO_POE A proof of existence is missing to
ascertain that a signed object has
been produced before some
compromising event (e.g. broken
algorithm).

The validation process
should provide additional
information on the problem.

 TRY_LATER Not all constraints can be fulfilled
using available information. However,
it may be possible to do so using
additional revocation information that
will be available at a later point of
time.

The validation process shall
output the point of time,
where the necessary
revocation information is
expected to become
available.

 NO_POLICY The policy to use for validation could
not be identified.

 SIGNED_DATA_NOT_
FOUND

Cannot obtain signed data. The process should output
when available:
• The identifier (s) (e.g. an

URI) of the signed data
that caused the failure.

 GENERIC Any other reason. The validation process shall
output:
Additional information why
the validation status has
been declared Indeterminate.

4.2 Validation Constraints
The validation process is controlled by a set of validation constraints in use. These constraints may be defined:

• using formal policy specifications, e.g. in one of the standard policy formats [i.2], [i.3]; or

• defined explicitly in system specific control data: e.g. in conventional configuration-files like property or
in-files or stored in a registry or database; or

• implicitly by the implementation itself.

Additionally constraints may be provided by the DA to the SVA via parameters implied by the application or the user.
This clause defines types of constraints influencing the validation process and the validation result, irrespective of
where these constraints have been defined.

Some of the constraints are related to elements of the signature validation process that are widely implemented in
applications and already have been standardized elsewhere, e.g. in X.509 or PKIX. Details on how to check that the
signature matches such constraints will not be given in the present document. Such standardised constraints are listed in
annex A to give an overview of all constraints that are considered relevant for the purpose of the present document. Use
of other constraints is outside the scope of the present document.

The verifier may consider additional constraints that are not mentioned in the present document. It is not foreseeable,
which constraints a DA may need to impose on the SVA. It is assumed that an implementation handles all constraints
properly. If the algorithm prescribes a certain check and the set of constraints state that such a check is not required
(e.g. revocation checking), a conformant implementation can skip over that step and assume the check succeeded. In
such cases, the SVA shall return, in its final report to the DA, the list of checks that were disabled due to the policy.

The present document does not always prescribe when constraints are to be checked, since this is implementation
dependent. A conformant SVA shall however check all constraints that are prescribed.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)16

4.3 X.509 certificate meta-data
X.509 certificate meta-data is additional information that is associated to a given certificate, a CRL or an OCSP.

NOTE: Such meta-data may be required to allow the SVA to correctly validate a signature, if the SVA is likely
unable to find this information by itself or in case there may be conflicting information the SVA would
not be unable to resolve on its own. For example: If the validation policy requires a qualified certificate,
but this information is not contained in the certificate itself, but the certificate is known to be a qualified
one, the DA can make this information available to the SVA as meta-data.

Certificate meta-data may, e.g. be:

• taken from the certificate content TS 101 862 [5], TS 101 456 [7] and TS 102 042 [8];

• derived from a Trust-service Status List [3] entry, or a full Trust-service Status List; or

• taken from local configuration.

4.4 Trust Management
While trust management is essential for signature validation, it is out of scope of the present document to define, how
trust management has to be handled. The X.509 Certificate Validation (XCV)-process as specified in clause 5.3 builds
on the Certification Path Validation, as specified in [4], clause 6.1, which is based on trust anchors. Trust anchors are
typically retained in the form of (root) certificates that are considered trustworthy, where all certificates issued under
such a hierarchy are trusted. The selection of acceptable trust anchors is part of the Validation Context Initialisation
(VCI) process when setting up the X.509 Validation Parameters, and it is the responsibility of the DA to select the trust
anchors for a validation process.

NOTE: The decision to accept a Certification Authority as a trust anchor is not to be taken lightly. It is a matter of
local policy as well as the application context whether a certificate of a CA is acceptable or not. A CA
that is trusted for email-exchange may e.g. not be trusted for verification of signed contracts.

How the DA and the SVA agree on which trust anchors are acceptable is implementation dependent and out of scope
for the present document. Trust anchors are typically made available as:

• trust points specified in signature validation policies;

• sets of trusted CAs, e.g. represented by their root certificates stored in the environment (like Microsoft'®s
certificate store); or

• trust service status Lists as specified in [3].

4.5 The concept of revocation freshness
To check the revocation status of a certificate at the current time, it is necessary to obtain recent revocation status
information about that certificate. However, obtaining revocation status information issued at the current time is (in
practice) impossible even with schemes providing real time revocation information (e.g. OCSP). In practice, we use
revocation status information issued shortly before the current time and we make the approximation that the information
it contains is still reliable at the current time. The freshness of the revocation status information is the maximum
accepted difference between the issuance date of the revocation status information and the current time. The nextUpdate
field, when present, indicates a date at which a newer CRL should be available; the difference between that value and
the thisUpdate field is thus a freshness that should always be fulfillable, and can be used as an upper bound on the
freshness that a relying party may require for a given CRL. In general, revocation status information is said "fresh" if its
issuance date is after the current time minus the considered freshness.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)17

Figure 1: Freshness

Figure 1 shows two objects, A and B, created at the time shown. Object A is considered "fresh", while object B is not,
having been created at a time outside the "window of freshness".

The same notion can be extended into the past. When revocation status information is used to ascertain the revocation
status of a certificate at a particular date in the past, the revocation status information is said to be "fresh" if it has been
issued after the validation date (in the past) minus the considered freshness. See Figure 2 as an illustration for the
concept.

Figure 2: Freshness in the past

5 Basic Building Blocks
This clause presents basic building blocks that are useable in the signature validation process. Later clauses will use
these blocks to construct validation algorithms for specific scenarios. Figure 3 shows, in a simplified way, how these
building are related to achieve signature validation.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)18

Local Configuration

Validation Policy

Trust Anchors (e.g.
TSL)

Signature

X.509 Certificate Path
Validation Constraints

Cryptographic
Constraints

Signature Validation Basic Design (Simplified)

Certificate Meta-
Data Constraints

Validation

Context

Initialization (VCI)

Signature Elements
Constraints

Identification of

Signer’s Certificate

(ISC) .

X.509 Certificate

Validation (XCV)

Cryptographic

Verification (CV)

Signature

Acceptance

Validation (SAV)

Signature Signature
X.509 CPV
Constraints

Certificate Meta-
Data Constraints

Cryptographic
Constraints

Signature
Cryptographic

Constraints

Signature
Signature Elements

Constraints
Cryptographic

Constraints

X.509

X.509

X.509

Signature Validation Process

Signature

Signature

X.509

INVALID
INDETERMINATE

INVALID
INDETERMINATE

INVALID
INDETERMINATE

VALID + validation report data

INDETERMINATE

VALID + validation step report

Figure 3: Signature Validation

5.1 Identification of the Signer's Certificate (ISC)

5.1.1 Description

This process consists in identifying the signer's certificate that will be used to validate the signature.

5.1.2 Inputs

Table 3: Inputs to the ISC process

Input Requirement
Signature Mandatory

Signer's Certificate Optional

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)19

5.1.3 Outputs

• In case of success, i.e. the signer's certificate can be identified, the output shall be the signer's certificate.

• In case of failure, i.e. the signer's certificate cannot be identified, the output shall be the indication
INDETERMINATE and the sub indication NO_SIGNER_CERTIFICATE_FOUND.

NOTE: If the signature is compliant with the CD 2011/130/EU, this process will never return INDETERMINATE,
since the signer's certificate is present in the signature.

5.1.4 Processing

The common way to unambiguously identify the signer's certificate is by using a property/attribute of the signature
containing a reference to it, which includes the digest computed over the certificates encoded value. The certificate or a
reference to the certificate can either be found in the signature or it can be obtained using external sources. The signer's
certificate may also be provided by the DA. If the certificate cannot be retrieved, the indication INDETERMINATE will
be the result.

Clauses 5.1.4.1 to 5.1.4.3 provide specific processing details for each AdES signature type (i.e. XAdES, CAdES or
PAdES), once the certificate has been retrieved.

5.1.4.1 XAdES processing

The signing certificate shall be checked against all references present in the ds:SigningCertificate property, if
present, since one of these references shall be a reference to the signing certificate [1]. The following steps shall be
performed:

1) Take the first child of the property and check that the content of ds:DigestValue matches the result of
digesting the signing certificate with the algorithm indicated in ds:DigestMethod. If they do not match,
take the next child and repeat this step until a matching child element has been found or all children of the
element have been checked. If they do match, continue with step 2. If the last element is reached without
finding any match, the validation of this property shall be taken as failed and INVALID/FORMAT_FAILURE is
returned.

2) If the ds:KeyInfo contains the ds:X509IssuerSerial element, check that the issuer and the serial
number indicated in that element and IssuerSerial from SigningCertificate are the same. If they do
not match, the validation of this property shall be taken as failed and INDETERMINATE is returned.

5.1.4.2 CAdES processing

The signing certificate shall be checked against the references present in one of the following attributes:
ESS-signing-certificate, ESS-signing-certificate-v2 or Other-signing-certificate, since one of these attributes shall
contain a reference to the signing certificate. For doing this, the following tasks shall be performed:

1) Take the first element of the attribute and check that the content of the field containing the digest value
matches the result of digesting the signing certificate with the algorithm implicitly or explicitly indicated in the
reference attribute. If they match, continue with step 2. Otherwise the validation of this attribute shall be taken
as failed and INVALID/FORMAT_FAILURE is returned.

2) Compare the details of the issuer's name and the serial number of the certificate with those indicated in the
reference. If any of them does not match, the validation of this attribute shall be taken as failed and
INDETERMINATE is returned.

5.1.4.3 PAdES processing

The signing certificate shall be checked against the references present in one of the following attributes:
ESS-signing-certificate or ESS-signing-certificate-v2, since one of these attributes shall contain a reference to the
signing certificate. For doing this, follow the same steps as for CAdES (see clause 5.1.4.2).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)20

5.2 Validation Context Initialization (VCI)

5.2.1 Description

This process consists in initializing the validation constraints (chain constraints, cryptographic constraints, signature
constraints) and parameters (X.509 validation parameters, certificate meta-data) that will be used to validate the
signature. The constraints and parameters may be initialized from any of the sources listed in clauses 4.2, 4.3 and 4.4.

5.2.2 Inputs

Table 4: Inputs to the VCI process

Input Requirement
Signature Mandatory
Signature Validation Policies Optional
Trusted-status Service Lists Optional
Local configuration Optional

5.2.3 Outputs

In case of failure, the process outputs INDETERMINATE or INVALID with an indication explaining the reason(s) of
failure.

In case of success, the process outputs the following:

Table 5: Output of the VCI process

Output
X.509 Validation Parameters
Certificate meta-data
Chain Constraints
Cryptographic Constraints
Signature Constraints

5.2.4 Processing

If the validation constraints and parameters have been initialized using an allowed set of signature validation policies
[i.2], [i.3] and if the signature has been created under one of these policies and also contains a commitment type
indication property/attribute, the specific commitment defined in the policy shall be selected using this attribute. The
clauses below describe the processing of these properties/attributes. The processing of additional sources for
initialization (e.g. local configuration) is out of the scope of the present document.

This implies that a signature policy referenced in a signature shall be known to the verifier and listed in the set of
acceptable policies. If the policy is unknown to the verifier, accepting a commitment type is not possible and may even
be dangerous. In this case, the SVA shall return INVALID/UNKNOWN_COMMITMENT_TYPE.

If the SVA cannot access a formal policy, the policy is not able to parse the policy file or the SVA cannot process the
policy for any other reason, it shall return INVALID/POLICY_PROCESSING_ERROR with an appropriate indication.
If the SVA cannot identify the policy to use, it shall return INDETERMINATE/ NO_POLICY.

5.2.4.1 Processing commitment type indication

If this signed property is present, it allows identifying the commitment type and thus affects all rules for validation,
which depend on the commitment type that shall be used in the validation context initialization.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)21

5.2.4.1.1 XAdES Processing

If the signature is a XAdES signature, the SVA shall check that each xades:ObjectReference element within
the xades:CommitmentTypeIndication actually references a ds:Reference element present in the
signature. If any of these elements does not refer to one of the ds:Reference elements, then the SVA shall assume
that a format failure has occurred during the verification and return INVALID/FORMAT_FAILURE with an indication
that the validation failed to an invalid commitment type property.

5.2.4.2 Processing Signature Policy Identifier

If this signed property/attribute is present and it is not implied, the SVA shall perform the following checks. If any of
these checks fail, then the SVA shall assume that a failure has occurred during the verification and return INVALID/
POLICY_PROCESSING_ERROR with an indication that the validation failed to an invalid signature policy identifier
property/attribute.

1) Retrieve the electronic document containing the details of the policy, and identified by the contents of the
property/attribute.

2) If the signature is a XAdES signature, apply the transformations indicated in the ds:Transforms element
of xades:SignaturePolicyId element. If the signature is not a XAdES signature, go to step 3.

3) Obtain the digest of the resulting document against which the digest value present in the property/attribute will
be checked:

a) If the resulting document is based on TR 102 272 [i.2], use the digest value present in the
SignPolicyDigest element from the resulting document. Check that the digest algorithm indicated
in the SignPolicyDigestAlg from the resulting document is equal to the digest algorithm
indicated in the property.

b) If the resulting document is based on TR 102 038 [i.3], use the digest value present in
signPolicyHash element from the resulting document. Check that the digest algorithm indicated in
the signPolicyHashAlg from the resulting document is equal to the digest algorithm indicated in the
attribute.

c) In all other cases, compute the digest using the digesting algorithm indicated in the children of the
property/attribute.

4) Check that the digest obtained in the previous step is equal to the digest value indicated in the children of the
property/attribute.

5) Should the property/attribute have qualifiers, manage them according to the rules that are stated by the policy
applying within the specific scenario.

6) If the checks described before end successfully, the process extracts the validation constraints from the rules
encoded in the validation policy. If an explicit commitment is identified, select the rules corresponding to this
commitment in the signature. If the commitment is not recognized, the Verifier may select the rules dependant
on other sources (e.g. the data being signed). The way used by the signature policy for presenting the rules and
their description are out of the scope of the present document. TR 102 038 [i.3] specifies a "XML format for
signature policies" that may be automatically processed.

If the signature policy is implied, and stated so by the signature rules, the SVA shall perform the checks mandated by
the implicit signature policy that shall be provided by the verifier by one of the methods described in clause 4.2.

NOTE: An implicit policy can in the most general case either be established according to the minimum
requirements by law or if being more constrained only be discovered in well known or pre-agreed
(driving) application contexts.

5.3 X.509 Certificate Validation (XCV)

5.3.1 Description

The objective of this process is to validate the signer's certificate.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)22

5.3.2 Inputs

Table 6: Inputs to the XCV process

Input Requirement
Signature Mandatory
Signer's certificate Mandatory
X.509 Validation Parameters Mandatory
Certificate meta-data Optional
Chain Constraints Optional
Cryptographic Constraints Optional

5.3.3 Outputs

The process outputs one of the following indications together with the associated validation report data.

Table 7: Output of the XCV process

Indication
VALID
INDETERMINATE NO_CERTIFICATE_CHAIN_FOUND

OUT_OF_BOUNDS_NO_POE
REVOKED_NO_POE
CRYPTO_CONSTRAINTS_FAILURE_NO_POE

INVALID CHAIN_CONSTRAINTS_FAILURE

5.3.4 Processing

This process consists of the following steps:

1) Check that the current time is in the validity range of the signer's certificate. If this constraint is not satisfied,
abort the processing with the indication INDETERMINATE and the sub indication
OUT_OF_BOUNDS_NO_POE.

2) Build a new prospective certificate chain that has not yet been evaluated. The chain shall satisfy the conditions
of a prospective certificate chain as stated in [4], clause 6.1, using one of the trust anchors provided in the
inputs:

a) If no new chain can be built, abort the processing with the current status and the last chain built or, if no
chain was built, with INDETERMINATE/NO_CERTIFICATE_CHAIN_FOUND.

b) Otherwise, add this chain to the set of prospected chains and go to step 3.

3) Run the Certification Path Validation [4], clause 6.1, with the following inputs: the prospective chain built in
the previous step, the trust anchor used in the previous step, the X.509 parameters provided in the inputs and
the current date/time. The validation shall include revocation checking for each certificate in the chain:

a) If the certificate path validation returns a success indication and the revocation information used is
considered fresh, go to the next step.

b) If the certificate path validation returns a success indication and the revocation information used is not
considered fresh, abort the process with the indication INDETERMINATE, the sub indication
TRY_LATER and the content of the NEXT_UPDATE-field of the CRL used as the suggestion for when to
try the validation again.

c) If the certificate path validation returns a failure indication because the signer's certificate has been
determined to be revoked, abort the process with the indication INDETERMINATE, the sub indication
REVOKED_NO_POE, the validated chain, the revocation date and the reason for revocation.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)23

d) If the certificate path validation returns a failure indication because the signer's certificate has been
determined to be on hold, abort the process with the indication INDETERMINATE, the sub indication
TRY_LATER, the suspension time and, if available, the content of the NEXT_UPDATE-field of the CRL
used as the suggestion for when to try the validation again.

e) If the certificate path validation returns a failure indication because an intermediate CA has been
determined to be revoked, set the current status to INDETERMINATE/REVOKED_CA_NO_POE and go
to step 2.

f) If the certificate path validation returns a failure indication with any other reason, go to step 2.

4) Apply the Chain Constraints to the chain. Certificate meta-data shall be taken into account when checking
these constraints against the chain. If the chain does not match these constraints, set the current status to
INVALID/CHAIN_CONSTRAINTS_FAILURE and go to step 2.

5) Apply the cryptographic constraints to the chain. If the chain does not match these constraints, set the current
status to INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE and go to step 2.

6) Return the chain with the indication VALID.

NOTE 1: Chain construction (step 2) and validation (step 3) may use validation data (certificates, CRLs, etc.)
extracted from the signature or obtained from other sources (e.g. LDAP servers). The management of the
sources for the retrieval of validation data is out of the scope of the present document.

NOTE 2: For more information and rational about certificate chain construction, refer to [i.1].

5.4 Cryptographic Verification (CV)

5.4.1 Description

This process consists in verifying the integrity of the signed data by performing the cryptographic verifications.

5.4.2 Inputs

Table 8: Inputs to the CV process

Input Requirement
Signature Mandatory
Signer Certificate Mandatory
Validated certificate chain Optional
Signed data object(s) Optional

NOTE: In most cases, the cryptographic verification requires only the signer's certificate and not the entire
validated chain. However, for some algorithms the full chain may be required (e.g. the case of DSS/DSA
public keys which inherit their parameters from the issuer certificate).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)24

5.4.3 Outputs

The process outputs one of the following indications together with the associated validation report data:

Table 9: Outputs of the CV process

Indication Description Additional data items
VALID The signature passed the

cryptographic verification.

INVALID HASH_FAILURE The hash of at least one of the
signed data items does not
match the corresponding hash
value in the signature.

The process should output:
• The identifier (s) (e.g. an

URI) of the signed data that
caused the failure.

SIG_CRYPTO_FAILURE The cryptographic verification of
the signature value failed.

INDETERMINATE SIGNED_DATA_NOT_FOUND Cannot obtain signed data. The process should output:
• The identifier (s) (e.g. an

URI) of the signed data that
caused the failure.

5.4.4 Processing

The first and second steps as well as the Data To Be Signed depend on the signature type. The technical details on how
to do this correctly are out of scope for the present document. See [10], [16], [12], [13], [14] and [15] for details:

1) Obtain the signed data objects(s) if not provided in the inputs (e.g. by dereferencing an URI present in the
signature). If the signed data object (s) cannot be obtained, abort with the indication
INDETERMINATE/SIGNED_DATA_NOT_FOUND.

2) Check the integrity of the signed data objects. In case of failure, abort the signature validation process with
INVALID/HASH_FAILURE.

3) Verify the cryptographic signature using the public key extracted from the signer's certificate in the chain, the
signature value and the signature algorithm extracted from the signature. If this cryptographic verification
outputs a success indication, terminate with VALID. Otherwise, terminate with
INVALID/SIG_CRYPTO_FAILURE.

5.5 Signature Acceptance Validation (SAV)

5.5.1 Description

This building block covers any additional verification that shall be performed on the attributes/properties of the
signature.

5.5.2 Inputs

Table 10: Inputs to the SVA process

Input Requirement
Signature Mandatory
Cryptographic verification output Optional
Cryptographic Constraints Optional
Signature Constraints Optional

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)25

5.5.3 Outputs

The process outputs one of the following indications:

Table 11: Outputs of the SVA process

Indication Description Additional data
items

VALID The signature is
conformant with the
validation constraints.

INVALID SIG_CONSTRAINTS_FAILURE The signature is not
conformant with the
validation constraints.

The process shall
output:

• The set of
constraints
that are not
verified by
the
signature.

INDETERMINATE CRYPTO_CONSTRAINTS_FAILURE_NO_POE At least one of the
algorithms used in
validation of the signature
together with the size of
the key, if applicable,
used with that algorithm
is no longer considered
reliable.

The process shall
output:

• A list of
algorithms,
together with
the size of
the key, if
applicable,
that have
been used in
validation of
the signature
but no longer
are
considered
reliable
together with
a time up to
which each
of the listed
algorithms
were
considered
secure.

5.5.4 Processing

This process consists in checking the Signature and Cryptographic Constraints against the signature. The general
principle is as follows: perform the following for each constraint:

• If the constraint necessitates processing a property/attribute in the signature, perform the processing of the
property/attribute as specified from clauses 5.5.4.1 to 5.5.4.8.

• If at least one of the algorithms that have been used in validation of the signature or the size of the keys used
with such an algorithm is no longer considered reliable, return
INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE together with the list of algorithms and
key sizes, if applicable, that are concerned and the time for each of the algorithms up to which the respective
algorithm was considered secure.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)26

NOTE 1: We do that, since the algorithm or key size used may at the time of signing the signed object have been
perfectly secure and only expired years later. Long term validation may then still allow validation of the
signed object if e.g. time stamps using different, still secure, algorithms or key sizes have been applied in
time. E.g. an RSA-key of 2 400 bits is currently assumed to be secure for ~20 years. If a signature created
with such a key has to be verified using this algorithm in 25 years from now, it can be secured by e.g.
creating a time stamp using an RSA-key of ~5 300 bits [i.5]. The algorithms of concern are not only the
hash- and signature-algorithm for the signature itself, but also for any of the Certificate, CRLs, time
stamps or other material used in the validation process.

• If one or more checks fail, output INVALID/SIG_CONSTRAINTS_FAILURE together with the set of
constraints that are not satisfied by the signature.

• If all the constraints are satisfied, output VALID.

NOTE 2: The SVA may ignore processing a property/attribute for which no validation constraint is specified.

5.5.4.1 Processing AdES properties/attributes

This clause describes the application of Signature Constraints on the content of the signature including the processing
on signed and unsigned properties/attributes.

5.5.4.2 Processing signing certificate reference constraint

If the SigningCertificate property contains references to other certificates in the path, the verifier shall check
each of the certificates in the certification path against these references as specified in steps 1 and 2 in clause 5.1.4.1
(respectively clause 5.1.4.2) for XAdES (respectively CAdES).

Should this property contain one or more references to certificates other than those present in the certification path, the
verifier shall assume that a failure has occurred during the verification.

Should one or more certificates in the certification path not be referenced by this property, the verifier shall assume that
the verification is successful unless the signature policy mandates that references to all the certificates in the
certification path "shall" be present.

5.5.4.3 Processing claimed signing time

If the signature constraints contain constraints regarding this property, the verifying application shall follow its rules for
checking this signed property.

Otherwise, the verifying application shall make the value of this property/attribute available to its DA, so that it may
decide additional suitable processing, which is out of the scope of the present document.

5.5.4.4 Processing signed data object format

If the signature constraints contain constraints regarding this property, the verifying application shall follow its rules for
checking this signed property.

Otherwise, the verifying application shall make the value of this property/attribute available to the DA, so that it may
decide additional suitable processing, which is out of the scope of the present document.

5.5.4.5 Processing indication of production place of the signature

If the signature constraints contain constraints regarding this property, the verifying application shall follow its rules for
checking this signed property.

Otherwise, the verifying application shall make the value of this property/attribute available to its DA, so that it may
decide additional suitable processing, which is out of the scope of the present document.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)27

5.5.4.6 Processing Time-stamps on signed data objects

If the signature constraints contain specific constraints for content-time-stamp attributes, the SVA shall check that they
are satisfied. To do so, the SVA shall do the following steps for each content-time-stamp attribute:

1) Perform the Validation Process for AdES Time-Stamps as defined in clause 7 with the time-stamp token of the
content-time-stamp attribute.

2) Check the message imprint: check that the hash of the signed data obtained using the algorithm indicated in the
time-stamp token matches the message imprint indicated in the token.

3) Apply the constraints for content-time-stamp attributes to the results returned in the previous steps. If any
check fails, return INVALID/SIG_CONSTRAINTS_FAILURE with an explanation of the unverified constraint.

5.5.4.7 Processing Countersignatures

If the signature constraints define specific constraints for countersignature attributes, the SVA shall check that they are
satisfied. To do so, the SVA shall do the following steps for each countersignature attribute:

1) Perform the validation process for AdES-BES/EPES using the countersignature in the property/attribute and
the signature value octet string of the signature as the signed data object.

2) Apply the constraints for countersignature attributes to the result returned in the previous step. If any check
fails, return INVALID/SIG_CONSTRAINTS_FAILURE with an explanation of the unverified constraint.

If the signature constraints do not contain any constraint on countersignatures, the SVA may still verify the
countersignature and provide the results in the validation report. However, it shall not consider the signature validation
to having failed if the countersignature could not be verified.

5.5.4.8 Processing signer attributes/roles

If the signature constraints define specific constraints for certified attributes/roles, the SVA shall perform the following
checks:

1) The SVA shall verify the validity of the attribute certificate(s) present in this property/attribute following the
rules established in [6].

2) The SVA shall check that the attribute certificate(s) actually match the rules specified in the input constraints.

If the signature rules do not specify rules for certified attributes/roles, the SVA shall make the value of this
property/attribute available to its DA so that it may decide additional suitable processing, which is out of the scope of
the present document.

6 Basic Validation Process

6.1 Description
This clause describes a validation process for basic short-term signature validation that is appropriate for validating
basic signatures (e.g. time-stamps, CRLs, etc.) as well as AdES-BES and AdES-EPES electronic signatures. The
process is built on the building blocks described in the previous clause.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)28

6.2 Inputs

Table 12: Inputs to BES/EPES validation

Input Requirement
Signature Mandatory
Signed data object (s) Optional
Signer's Certificate Optional
Trusted-status Service Lists Optional
Signature Validation Policies Optional
Local configuration Optional

6.3 Outputs
The main output of the signature validation is a status indicating the validity of the signature. This status may be
accompanied by additional information (see clause 4).

6.4 Processing
NOTE 1: Since processing is largely implementation dependent, the steps listed in this clause are not necessarily to

be processed exactly in the order given. Any ordering that produces the same results can be used, even
parallel processing is possible.

The following steps shall be performed:

1) Identify the signer's certificate: Perform the Signer's Certificate Identification process (see clause 5.1) with the
signature and the signer's certificate, if provided as a parameter. If it returns INDETERMINATE, terminate
with INDETERMINATE and associated information, otherwise go to the next step.

2) Initialize the validation constraints and parameters: Perform the Validation Context Initialization process
(see clause 5.2).

3) Validate the signer's certificate: Perform the X.509 Certificate Validation process (see clause 5.3) with the
following inputs:

a) The signature.

b) The signer's certificate obtained in step 1.

c) X.509 Validation Parameters, Certificate meta-data, Chain Constraints and Cryptographic Constraints
obtained in step 2:

� If the process returns VALID, go to the next step.

� If the process returns INDETERMINATE/REVOKED_NO_POE: If the signature contains a content-
time-stamp attribute, perform the Validation Process for AdES Time-Stamps as defined in clause 7.
If it returns VALID and the generation time of the time-stamp token is after the revocation time,
terminate with INVALID/REVOKED. In all other cases, terminate with
INDETERMINATE/REVOKED_NO_POE.

� If the process returns INDETERMINATE/OUT_OF_BOUNDS_NO_POE: If the signature contains
a content-time-stamp attribute, perform the Validation Process for AdES Time-Stamps as defined
in clause 7. If it returns VALID and the generation time of the time-stamp token is after the
expiration date of the signer's certificate, terminate with INVALID/EXPIRED. In all other cases,
terminate with INDETERMINATE/OUT_OF_BOUNDS_NO_POE.

� In all other cases, terminate with the returned indication and associated information.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)29

4) Verify the cryptographic signature value: Perform the Cryptographic Verification process with the following
inputs:

a) The signature.

b) The certificate chain returned in the previous step.

c) The signed data object(s).

If the process returns VALID, go to the next step. Otherwise, terminate with the returned indication and associated
information.

5) Apply the validation constraints: Perform the Signature Acceptance Validation process with the following
inputs:

a) The signature.

b) The Cryptographic Constraints.

c) The Signature Constraints.

� If the process returns VALID, go to the next step.

� If the process returns INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE and the
material concerned by this failure is the signature value: If the signature contains a content-time-
stamp attribute, perform the Validation Process for AdES Time-Stamps as defined in clause 7. If it
returns VALID and the algorithm(s) concerned were no longer considered reliable at the generation
time of the time-stamp token, terminate with INVALID/CRYPTO_CONSTRAINTS_FAILURE. In all
other cases, terminate with INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE.

NOTE 2: The content time-stamp is a signed attribute and hence proves that the signature value was produced after
the generation time of the time-stamp token.

NOTE 3: In case this clause returns INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE, LTV can
be used to validate the signature, if other POE (e.g. from a trusted archive) exist.

� In all other cases, terminate with the returned indication and associated information.

6) Data extraction: the SVA shall return the success indication VALID. In addition, the SVA should return
additional information extracted from the signature and/or used by the intermediate steps. In particular, the
SVA should provide to the DA all information related to signed and unsigned properties/attributes, including
those which were not processed during the validation process. What the DA shall do with this information is
out of the scope of the present document.

7 Validation Process for Time-Stamps

7.1 Description
This clause describes a process for the validation of an RFC 3161 [11] time-stamp token.

An RFC 3161 [11] time-stamp token is basically a CAdES-BES signature. Hence, the validation process is built in the
validation process of a CAdES-BES signature.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)30

7.2 Inputs

Table 13: Inputs to time stamp validation

Input Requirement
Time-stamp token Mandatory
Trusted-status Service Lists Optional
Signature Validation Policies Optional
Local configuration Optional
Time Stamp Certificate Optional

7.3 Outputs
The main output of the signature validation is a status indicating the validity of the signature. This status may be
accompanied by additional information (see clause 4).

7.4 Processing
The following steps shall be performed:

1) Token signature validation: perform the validation process for BES signature (see clause 6) with the
time-stamp token. In all the steps of this process, take into account that the signature to validate is a
time-stamp token (e.g. to select TSA trust-anchors). If this step ends with a success indication, go to the next
step. Otherwise, fail with the indication and information retuned by the validation process.

2) Data extraction: in addition to the data items returned in step 1, the process shall return data items extracted
from the TSTInfo [11] (the generation time, the message imprint, etc.). These items may be used by the SVA
in the process of validating the AdES signature.

8 Validation Process for AdES-T

8.1 Description
An AdES-T signature is built on BES or EPES signature and incorporates trusted time associated to the signature. The
trusted time may be provided by two different means:

• A signature time-stamp unsigned property/attribute added to the electronic signature.

• A time mark of the electronic signature provided by a trusted service provider.

This clause describes a validation process for AdES-T signatures.

8.2 Inputs

Table 14: Inputs to AdES-T validation

Input Requirement
Signature Mandatory
Signed data object (s) Optional
Trusted-status Service Lists Optional
Signature Validation Policies Optional
Local configuration Optional
Signer's Certificate Optional

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)31

8.3 Outputs
The main output of the signature validation is a status indicating the validity of the signature. This status may be
accompanied by additional information (see clause 4).

8.4 Processing
The following steps shall be performed:

1) Initialize the set of signature time-stamp tokens from the signature time-stamp properties/attributes present in
the signature and initialize the best-signature-time to the current time.

NOTE 1: Best-signature-time is an internal variable for the algorithm denoting the earliest time when it can be
proven that a signature has existed.

2) Signature validation: Perform the validation process for BES signatures (see clause 6) with all the inputs,
including the processing of any signed attributes/properties as specified. If this validation outputs VALID,
INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE,
INDETERMINATE/REVOKED_NO_POE or INDETERMINATE/OUT_OF_BOUNDS_NO_POE, go to the
next step. Otherwise, terminate with the returned status and information.

NOTE 2: We continue the process in the case INDETERMINATE/REVOKED_NO_POE, because a proof that the
signing occurred before the revocation date may help to go from INDETERMINATE to VALID
(step 5-a).

NOTE 3: We continue the process in the case INDETERMINATE/OUT_OF_BOUNDS_NO_POE, because a proof
that the signing occurred before the issuance date (notBefore) of the signer's certificate may help to go
from INDETERMINATE to INVALID (step 5-b).

NOTE 4: We continue the process in the case INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE,
because a proof that the signing occurred before the time one of the algorithms used was no longer
considered secure may help to go from INDETERMINATE to VALID (step 5-c).

3) Verification of time-marks: the verification of time-marks is out of the scope of the present document. If the
SVA accepts a time-mark as trustworthy (based on out-of-band mechanisms) and if the indicated time is
before the best-signature-time, set best-signature-time to the indicated time.

4) Signature time-stamp validation: Perform the following steps:

a) Message imprint verification: For each time-stamp token in the set of signature time-stamp tokens, do the
message imprint verification as specified in clauses 8.4.1 or 8.4.2 depending on the type of the signature.
If the verification fails, remove the token from the set.

b) Time-stamp token validation: For each time-stamp token remaining in the set of signature time-stamp
tokens, the SVA shall perform the time-stamp validation process (see clause 7):

� If VALID is returned and if the returned generation time is before best-signature-time,
set est-signature-time to this date and try the next token.

� In all remaining cases, remove the time-stamp token from the set of signature time-stamp tokens
and try the next token.

5) Comparing times:

a) If step 2 returned INDETERMINATE/REVOKED_NO_POE: If the returned revocation time is posterior
to best-signature-time, perform step 5d. Otherwise, terminate with
INDETERMINATE/REVOKED_NO_POE. In addition to the data items returned in steps 1 and 2, the
SVA should notify the DA with the reason of the failure.

b) If step 2 returned INDETERMINATE/OUT_OF_BOUNDS_NO_POE: If best-signature-time is before the
issuance date of the signer's certificate, terminate with INVALID/NOT_YET_VALID. Otherwise,
terminate with INDETERMINATE/OUT_OF_BOUNDS_NO_POE. In addition to the data items returned
in steps 1 and 2, the SVA should notify the DA with the reason of the failure.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)32

c) If step 2 returned INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE and the material
concerned by this failure is the signature value or a signed attribute, check, if the algorithm(s) concerned
were still considered reliable at best-signature-time, continue with step d. Otherwise, terminate with
INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE.

d) For each time-stamp token remaining in the set of signature time-stamp tokens, check the coherence in
the values of the times indicated in the time-stamp tokens. They shall be posterior to the times indicated
in any time-stamp token computed on the signed data (i.e. any content-time-stamp signed
attributes in CAdES or any AllDataObjectsTimeStamp or
IndividualDataObjectsTimeStamp signed present properties in XAdES). The SVA shall apply
the rules specified in RFC 3161 [11], clause 2.4.2 regarding the order of time-stamp tokens generated by
the same or different TSAs given the accuracy and ordering fields' values of the TSTInfo field,
unless stated differently by the Signature Constraints. If all the checks end successfully, go to the next
step. Otherwise return INVALID/TIMESTAMP_ORDER_FAILURE.

6) Handling Time-stamp delay: If the validation constraints specify a time-stamp delay, do the following:

a) If no signing-time property/attribute is present, fail with INDETERMINATE and an explanation that the
validation failed due to the absence of claimed signing time.

b) If a signing-time property/attribute is present, check that the claimed time in the attribute plus the time-
stamp delay is after the best-signature-time. If the check is successful, go to the next step. Otherwise, fail
with INVALID/SIG_CONSTRAINTS_FAILURE and an explanation that the validation failed due to the
time-stamp delay constraint.

7) Data extraction: the SVA shall return the success indication VALID. In addition, the SVA should return
additional information extracted from the signature and/or used by the intermediate steps. In particular, the
SVA should return intermediate results such as the validation results of any signature time-stamp token or
time-mark. What the DA does with this information is out of the scope of the present document.

NOTE 5: In the algorithm above, the signature-time-stamp protects the signature against the revocation of the
signer's certificate (step 5-a) but not against expiration. The latter case requires validating the signer's
certificate in the past (see clause 9).

8.4.1 Message Imprint Verification of the signature-timestamp for XAdES

1) The SVA shall take the ds:SignatureValue element and canonicalize it using the algorithm indicated in
CanonicalizationMethod element of the property, if present. Otherwise use the standard canonicalization
method as specified by XMLDSIG [10].

2) The SVA shall compute the digest of the resulting byte stream using the algorithm indicated in the time-stamp
token and shall check if this value matches the values present in that token.

8.4.2 Message Imprint Verification of the signature-time-stamp for
CAdES/PAdES

1) The SVA shall take the signature field of the CAdES signature, encode it and compute the digest of the
resulting byte stream using the algorithm indicated in the time-stamp token.

2) The SVA shall check if the value obtained in the first step is the same as the digest present in the time-stamp
token.

9 Validation of LTV forms
This clause describes a validation process for signatures with long-term validation (LTV) information that is appropriate
for validating CAdES-A, XAdES-A, PAdES-LTV as well as any intermediate form (e.g. AdES-C, AdES-XL, etc.). The
process described in this clause can also be used to validate basic signatures (e.g. AdES-BES and AdES-EPES).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)33

In particular, this is useful in the case where the SVA shall take as input, in addition to the basic signature to validate,
additional evidences derived from previous validation (e.g. a proof of existence derived from the validation of a
time-stamp token). The process is built on the building block described in clause 5 and the additional building blocks
defined in clause 9.3.

The algorithms in this clause use attribute terminology used in the CAdES and XAdES specifications. The same
algorithms apply to PAdES signatures by considering the equivalent structures defined in PAdES.

9.1 The concept of Proof Of Existence (POE)
A proof of existence is evidence that proves that an object (a certificate, a CRL, signature value, hash value, etc.)
existed at a specific date/time, which may be a date/time in the past. The possession of a certain object at current time is
a proof of its existence at the current time. A suitable way of providing proof of existence of an object at a time in the
past is to generate a time-stamp on that object. Other services can provide proofs of existence by various means
(electronic notaries, archival services, etc.).

9.2 Additional Building blocks

9.2.1 Past certificate validation

9.2.1.1 Description

This process validates a certificate at a date/time which may be in the past. This may become necessary in the LTV
settings when a compromising event (for instance, the end-entity certificate expires) prevents the traditional certificate
validation algorithm (see clause 5.3) to asserting the validation status of a certificate (for instance, in case the end-entity
certificate is expired at the current time, the traditional validation algorithm will return
INDETERMINATE/OUT_OF_BOUNDS_NO_POE due to the step 1).

The rationale of the algorithm described below are given in [i.4] and can be summarized in the following: if a certificate
chain has been useable to validate a certificate at some date/time in the past, the same chain can be used at the current
time to derive the same validity status, provided each certificate in the chain satisfies one of the following:

a) The revocation status of the certificate can be ascertained at the current time (typically if the certificate is not
yet expired and appropriate revocation status information is obtained at the current time).

b) The revocation status of the certificate can be ascertained using "old" revocation status information such that
the certificate (resp. the revocation status information) is proven to having existed at a date in the past when
the issuer of the certificate (resp. the revocation status information) was still considered reliable and under
control of its signing key. This particular date/time will be named control-time.

NOTE: Control-time is an internal variable that is used within the algorithms and not part of the core results of
the validation process.

Assuming that the trust anchor is still accepted as such at current time, the validation process will slide the control-time
from the current-time to some date in the past each time it encounters a certificate proven to be revoked. In addition to
the certificate chain, the process outputs the last value of control-time - the control-time associated with the target
certificate (the certificate to validate). Any object signed with the target certificate and proven to exist before this
control-time can be accepted as VALID. This assertion is the basis of the LTV validation processes presented in the next
clauses. For more readability, the sliding algorithm is presented in its own building block (control-time sliding process)
described in the next clause.

It is important to note that when all the certificates in the chain can be validated at the current time, the control-time
never slides and the algorithm boils down to the traditional certificate validation algorithm described in clause 5.3.

The process below builds a prospective certificate chain in a very same way as in clause 5.3 except that the X.509
validation algorithm is performed at a determined date in the past (instead of the current date/time) and without any
revocation checking. For each such chain, the sliding algorithm is executed to calculate the control-time.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)34

9.2.1.2 Input

Input Requirement
Signature or time-stamp token Mandatory
Target certificate Mandatory
X.509 Validation Parameters Mandatory
A set of POEs Mandatory
Certificate meta-data Optional
Chain Constraints Optional
Cryptographic Constraints Optional

9.2.1.3 Output

Indication
VALID
INDETERMINATE CHAIN_CONSTRAINTS_FAILURE

NO_CERTIFICATE_CHAIN_FOUND
NO_POE

9.2.1.4 Processing

The following steps shall be performed:

1) Build a new prospective certificate chain that has not yet been evaluated. The chain shall satisfy the conditions
of a prospective certificate chain as stated in [4], clause 6.1, using one of the trust anchors provided in the
inputs:

a) If no new chain can be built, abort the processing with the current status and the last chain built or, if no
chain was built, with INDETERMINATE/NO_CERTIFICATE_CHAIN_FOUND.

b) Otherwise, go to the next step.

2) Run the Certification Path Validation [4], clause 6.1, with the following inputs: the prospective chain built in
the previous step, the trust anchor used in the previous step, the X.509 parameters provided in the inputs and a
date from the intersection of the validity intervals of all the certificates in the prospective chain. The validation
shall not include revocation checking:

a) If the certificate path validation returns a success indication, go to the next step.

b) If the certificate path validation returns a failure indication, go to step 1.

3) Perform the control-time sliding process with the following inputs: the prospective chain, the set of POEs and
the cryptographic constraints. If it outputs a success indication, go to the next step. Otherwise, set the current
status to the returned indication and subcode and go back to step 1.

4) Apply the Chain Constraints to the chain. Certificate meta-data has to be taken into account when checking
these constraints against the chain. If the chain does not match these constraints, set the current status to
INVALID/CHAIN_CONSTRAINTS_FAILURE and go to step 1.

5) Terminate with the current status and, if VALID, the certificate chain and the calculated control-time returned
in step 3.

9.2.2 Control-time sliding process

9.2.2.1 Description

This process will slide the control-time from the current-time to some date in the past each time it encounters a
certificate proven to be revoked.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)35

9.2.2.2 Input

Input Requirement
A prospective certificate chain Mandatory
A set of POEs Mandatory
Cryptographic constraints Optional

9.2.2.3 Output

Indication
VALID
INDETERMINATE NO_POE

9.2.2.4 Processing

The following steps shall be performed:

1) Initialize control-time to the current date/time.

2) For each certificate in the chain starting from the first certificate (the certificate issued by the trust anchor), do
the following:

a) Find revocation status information satisfying the following:

� The revocation status information is consistent with the rules conditioning its use to check the
revocation status of the considered certificate. For instance, in the case of a CRL, it shall satisfy the
checks described in (see clause 6.3).

� The issuance date of the revocation status information is before control-time.

If more than one revocation status is found, consider the most recent one and go to the next step. If there is no such
information, terminate with INDETERMINATE/NO_POE:

b) If the set of POEs contains a proof of existence of the certificate and the revocation status information at
(or before) control-time, go to step c). Otherwise, terminate with INDETERMINATE/NO_POE.

c) Update the value of control-time as follows:

� If the certificate is marked as revoked in the revocation status information, set control-time to the
revocation date.

� If the certificate is not marked as revoked.

- If the revocation status information is not considered "fresh", set control-time to the issuance
date of the revocation status information.

- Otherwise, the value of control-time is not changed.

d) Apply the cryptographic constraints to the certificate and the revocation status information. If the
certificate (or the revocation status information) does not match these constraints, set control-time to the
lowest time up to which the listed algorithms were considered reliable.

3) Continue with the next certificate in the chain or, if no further certificate exists, terminate with VALID and the
calculated control-time.

NOTE 1: In step 1, initializing control-time with current date/time assumes that the trust anchor is still trusted at the
current date/time. The algorithm can capture the very exotic case where the trust anchor is broken (or
becomes untrusted for any other reason) at a known date by initializing control-time to this date/time.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)36

NOTE 2: The rational of step 2-a) is to check that the revocation status information is "in-scope" for the given
certificate. In other words, the rationale is to check that the revocation status information is reliable to be
used to ascertain the revocation status of the given certificate. For instance, this includes the fact the
certificate is not expired at the issuance date of the revocation status information, unless the issuing CA
states that its issues revocation information status for expired certificates (for instance, using the CRL
extension expiredCertOnCRL).

NOTE 3: If the certificate (or the revocation status information) was authentic, but the signature has been faked
exploiting weaknesses of the algorithms used, this is assumed only to be possible after the date the
algorithms are declared to be no longer acceptable. Therefore, the owner of the original key pair is
assumed to having been under control of his key up to that date. This is the rational of sliding
control-time in step 2-d).

NOTE 4: For more readability, the algorithm above implicitly assumes that the revocation information status is
signed by the certificate's issuer which is the most traditional revocation setting but not the only one. The
same algorithm can be adapted to the cases where the revocation information status has its own certificate
chain by applying the control-time sliding process to this chain which would output a control-time that
has to be compared to the control-time associated to the certificate.

9.2.3 POE extraction

9.2.3.1 Description

This building block derives POEs from a given time-stamp. This process assumes the following about the time-stamp:

• The time-stamp has been accepted as VALID.

• The cryptographic hash function used in the time-stamp (MessageImprint.hashAlgorithm) is considered
reliable at the generation time of the time-stamp.

In the simple case, a time-stamp gives a POE for each data item protected by the time-stamp at the generation date/time
of the token. For instance, a time-stamp on the signature value gives a POE of the signature value (the binary data) at
the generation date/time of the time-stamp.

A time-stamp may also give an indirect POE when it is computed on the hash value of some data instead of the data
itself. In this case, we will use the following property (indirect POE):

• If we have a POE for h(d) at a date T1,where h is a cryptographic hash function and d is some data (e.g. a
certificate).

• And h is asserted in the cryptographic constraints to be trusted until at least a date T after T1.

• And we have a POE for d at a date T after T1.

Then, we can derive from the time-stamp a POE for d at T1.

9.2.3.2 Input

Input Requirement
Signature Mandatory
An attribute with a time-stamp token Mandatory
A set of POEs Mandatory (but may be empty)
Cryptographic constraints Optional

9.2.3.3 Output

A set of POEs.

9.2.3.4 Processing

The following steps shall be performed, depending on the type of the AdES time-stamp.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)37

9.2.3.4.1 Extraction from a time-stamp on the signature

Return the set of POEs resulting from the following: add a POE for the signature value at the generation time of the
time-stamp.

NOTE: It is possible to infer an indirect POE for the signed data objects (including the signed attributes).
However, this is true for some signature algorithms but not all of them (in particular this require that the
signature algorithm has the message recovery property and that we have a proof of existence of the public
key at the generation time of the time-stamp).

9.2.3.4.2 Extraction from a time-stamp on certificates and revocation references

Return the set of POEs resulting from the following. All the POEs are added with the generation time of the time-stamp
on certificates and revocation references.

For each reference in the attribute complete-certificate-references and complete-revocation-reference:

1) Add a POE for the hash value h(C) of the certificate C (respectively h(R) of the revocation status
information R).

2) If the set of POEs includes a POE for a certificate C (respectively a revocation status information R) at a
date/time T after the generation date/time of the time-stamp, add a POE for C (respectively R).

9.2.3.4.3 Extraction from a time-stamp on the signature and certificates and revocation
references

Return the set of POEs resulting from the following. All the POEs are added with the generation time of the time-stamp
on the signature and certificates and revocation references:

1) Do the extraction process from a time-stamp on the signature (see clause 9.2.3.4.1).

2) Do the extraction process from a time-stamp on certificates and revocation references (see clause 9.2.3.4.2).

9.2.3.4.4 Extraction from an archive-time-stamp

Return the set of POEs resulting from the following. All the POEs are added with the generation time of the archive
time-stamp:

1) Add a POE for each signed object.

2) Add a POE for the signature value.

3) Add a POE for each certificate and revocation status information present in the signature.

4) Add a POE for each signed and unsigned attribute (except the attribute containing this archive time-stamp and
any archive-time-stamp attribute added after this attribute) present in the signature. This implicitly includes the
addition of a POE (direct or indirect POE) for any time-stamp, certificate or revocation information status
encapsulated in these attributes.

9.2.3.4.5 Extraction from a long-term-validation attribute

This process applies only to CAdES [1]. If the long-term-validation attribute does not include the poeValue field, no
POEs are extracted. If the poeValue field is present with a time-stamp, perform the process below. Processing poeValue
field when an ERS [17] is present is out of the scope of the present document.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)38

Return the set of POEs resulting from the following. All the POEs are added with the generation time of the time-stamp
present in the poeValue:

1) Add a POE for the signed object if available in the SignedData.

2) Add a POE for the signature value.

3) Add a POE for each certificate (respectively revocation information status) in SignedData.certificates
(respectively in SignedData.crls) or in long-term-validation.extraCertificates (respectively in long-term-
validation.extraRevocation).

4) Add a POE for each signed and unsigned attribute (except the attribute containing this poeValue and the
long-term-validation attributes added after it). This implicitly includes the addition of a POE (direct or indirect
POE) for any time-stamp, certificate or revocation information status encapsulated in these attributes.

9.2.3.4.6 Extraction from a PDF document time-stamp

This process applies only to PAdES [14].

Return the set of POEs resulting from the following. All the POEs are added with the generation time of the document
time-stamp:

1) Add a POE for any SignedData included in the ByteRange protected by the document time-stamp. This
implicitly includes the addition of a POE (direct or indirect POE) for any time-stamp token, certificate or
revocation information status encapsulated in these SignedData.

2) Add a POE for each certificate or revocation information status in a Document Security Store included in the
ByteRange protected by the document time-stamp.

3) Add a POE for each document time-stamp included in the ByteRange protected by the document time-stamp.
This implicitly includes the addition of a POE (direct or indirect POE) for any certificate or revocation
information status encapsulated in these time-stamps.

9.2.4 Past signature validation process

9.2.4.1 Description

This process is used when validation of a signature (or a time-stamp token) fails at the current time with an
INDETERMINATE status such that the provided proofs of existence may help to go to a determined status.

9.2.4.2 Input

Input Requirement
Signature Mandatory
The current time status
indication/subcode

Mandatory

Target certificate Mandatory
X.509 Validation Parameters Mandatory
A set of POEs Mandatory
Certificate meta-data Optional
Chain Constraints Optional
Cryptographic constraints Optional

9.2.4.3 Output

This process outputs an indication/subcode, which is either the same as the current time indication/subcode given in the
inputs or one of the following: VALID, INVALID/NOT_YET_VALID.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)39

9.2.4.4 Processing

1) Perform the past certificate validation process with the following inputs: the signature, the target certificate,
the X.509 validation parameters, certificate meta-data, chain constraints, cryptographic constraints and the set
of POEs. If it returns VALID/control-time, go to the next step. Otherwise, return the current time status and
subcode with an explanation of the failure.

2) If there is a POE of the signature value at (or before) control-time do the following:

- If current time indication/subcode is INDETERMINATE/REVOKED_NO_POE or INDETERMINATE/
REVOKED_CA_NO_POE, return VALID.

- If current time indication/subcode is INDETERMINATE/OUT_OF_BOUNDS_NO_POE: say best-
signature-time is the lowest time at which there exists a POE for the signature value in the set of POEs:

a) If best-signature-time is before the issuance date of the signer's certificate (notBefore field),
terminate with INVALID/NOT_YET_VALID.

b) If best-signature-time is after the issuance date of the signer's certificate, return VALID.

- If current time indication/subcode is INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE
and for each algorithm (or key size) in the list concerned by the failure, there is a POE for the material
that uses this algorithm (or key size) at a time before to the time up to which the algorithm in question
was considered secure, return VALID.

In all other cases, return current time indication/subcode together with an explanation of the failure.

9.3 Long Term Validation Process

9.3.1 Description

An AdES-A (Archival Electronic Signature) is built on an XL signature (EXtended Long Electronic Signature). Several
unsigned attributes may be present in such signatures:

• Time-stamp(s) on the signature value (AdES-T).

• Attributes with references of validation data (AdES-C).

• Time-stamp(s) on the references of validation data (AdES-XT2).

• Time-stamp(s) on the references of validation data, the signature value and the signature time stamp
(AdES-XT1).

• Attributes with the values of validation data (AdES-XL).

• Archive time-stamp(s) on the whole signature except the last archive time-stamp (AdES-A).

The process described in this clause is able to validate any of the forms above but also any basic form (namely BES and
EPES).

The process handles the AdES signature as a succession of layers of signatures. Starting from the most external layer
(e.g. the last archive-time-stamp) to the most inner layer (the signature value to validate), the process performs the basic
signature validation algorithm (see clause 8 for the signature itself and clause 7 for the time-stamps). If the basic
validation outputs INDETERMINATE/REVOKED_NO_POE, INDETERMINATE/OUT_OF_BOUNDS_NO_POE or
INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE, we perform the past certificate validation which
will output a control-time in the past. The layer is accepted as VALID, provided we have a proof of existence before this
control-time.

The process does not necessarily fail when an intermediate time-stamp gives the status INVALID or INDETERMINATE
unless some validation constraints force the process to do so. If the validity of the signature can be ascertained despite
some time-stamps which were ignored due to INVALID (or INDETERLINATE) status, the SVA shall report this
information to the DA. What the DA does with this information is out of the scope of the present document.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)40

9.3.2 Input

Input Requirement
Signature Mandatory
Signed data object (s) Optional
Trusted-status Service Lists Optional
Signature Validation Policies Optional
Local configuration Optional
A set of POEs Optional
Signer's Certificate Optional

9.3.3 Output

The main output of this signature validation process is a status indicating the validity of the signature. This status may
be accompanied by additional information (see clause 4).

9.3.4 Processing

The following steps shall be performed:

1) POE initialization: Add a POE for each object in the signature at the current time to the set of POEs.

NOTE 1: The set of POE in the input may have been initialized from external sources (e.g. provided from an
external archiving system). These POEs will be used without additional processing.

2) Basic signature validation: Perform the validation process for AdES-T signatures (see clause 8) with all the
inputs, including the processing of any signed attributes/properties as specified.

- If the validation outputs VALID

� If there is no validation constraint mandating the validation of the LTV attributes/properties, go to
step 9.

� Otherwise, go to step 3.

- If the validation outputs one of the following: INDETERMINATE/REVOKED_NO_POE,
INDETERMINATE/REVOKED_CA_NO_POE, INDETERMINATE/OUT_OF_BOUNDS_NO_POE
or INDETERMINATE/CRYPTO_CONSTRAINTS_FAILURE_NO_POE, go to the next step.

- In all other cases, fail with returned code and information.

NOTE 2: We go to the LTV part of the validation process in the cases INDETERMINATE/REVOKED_NO_POE,
INDETERMINATE/REVOKED_CA_NO_POE, INDETERMINATE/OUT_OF_BOUNDS_NO_POE
and INDETERMINATE/ CRYPTO_CONSTRAINTS_FAILURE_NO_POE because additional proof of
existences may help to go from INDETERMINATE to a determined status.

NOTE 3: Performing the LTV part of the algorithm even when the basic validation gives VALID may be useful in
the case the SVA is controlled by an archiving service. In such cases, it may be necessary to ensure that
any LTV attribute/property present in the signature is actually valid before making a decision about the
archival of the signature.

3) If there is at least one long-term-validation attribute with a poeValue, process them, starting from the last (the
newest) one as follows: Perform the time-stamp validation process (see clause 7) for the time-stamp in the
poeValue:

a) If VALID is returned and the cryptographic hash function used in the time-stamp
(MessageImprint.hashAlgorithm) is considered reliable at the generation time of the time-stamp: Perform
the POE extraction process with the signature, the long-term-validation attribute, the set of POEs and the
cryptographic constraints as inputs. Add the returned POEs to the set of POEs.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)41

b) Otherwise, perform past signature validation process with the following inputs: the time-stamp in the
poeValue, the status/subcode returned in step 3, the TSA's certificate, the X.509 validation parameters,
certificate meta-data, chain constraints, cryptographic constraints and the set of POEs. If it returns
VALID and the cryptographic hash function used in the time-stamp is considered reliable at the
generation time of the time-stamp, perform the POE extraction process and add the returned POEs to the
set of POEs. In all other cases:

� If no specific constraints mandating the validity of the attribute are specified in the validation
constraints, ignore the attribute and consider the next long-term-validation attribute.

� Otherwise, fail with the returned indication/subcode and associated explanations

4) If there is at least one archive-time-stamp attribute, process them, starting from the last (the newest) one, as
follows: perform the time-stamp validation process (see clause 7):

a) If VALID is returned and the cryptographic hash function used in the time-stamp
(MessageImprint.hashAlgorithm) is considered reliable at the generation time of the time-stamp: Perform
the POE extraction process with the signature, the archive-time-stamp, the set of POEs and the
cryptographic constraints as inputs. Add the returned POEs to the set of POEs.

b) Otherwise, perform past signature validation process with the following inputs: the archive time-stamp,
the status/subcode returned in step 4, the TSA's certificate, the X.509 validation parameters, certificate
meta-data, chain constraints, cryptographic constraints and the set of POEs. If it returns VALID and the
cryptographic hash function used in the time-stamp is considered reliable at the generation time of the
time-stamp, perform the POE extraction process and add the returned POEs to the set of POEs. In all
other cases:

� If no specific constraints mandating the validity of the attribute are specified in the validation
constraints, ignore the attribute and consider the next archive-time-stamp attribute.

� Otherwise, fail with the returned indication/subcode and associated explanations.

NOTE 4: If the signature is PAdES, document time-stamps replace archive-time-stamp attributes and the process
"Extraction from a PDF document time-stamp" replaces the process "Extraction from an archive-
time-stamp".

5) If there is at least one time-stamp attribute on the references, process them, starting from the last one (the
newest), as follows: perform the time-stamp validation process (see clause 7):

a) If VALID is returned and the cryptographic hash function used in the time-stamp
(MessageImprint.hashAlgorithm) is considered reliable at the generation time of the time-stamp, perform
the POE extraction process with the signature, the time-stamp on the references, the set of POEs and the
cryptographic constraints. Add the returned POEs to the set of POEs.

b) Otherwise, perform past signature validation process with the following inputs: the time-stamp on the
references, the status/subcode returned in step 5, the TSA's certificate, the X.509 validation parameters,
certificate meta-data, chain constraints, cryptographic constraints and the set of POEs:

� If it returns VALID and the cryptographic hash function used in the time-stamp is considered
reliable at the generation time of the time-stamp, perform the POE extraction process and add the
returned POEs to the set of POEs. In all other cases:

� If no specific constraints mandating the validity of the attribute are specified in the validation
constraints, ignore the attribute and consider the next archive-time-stamp attribute.

Otherwise, fail with the returned indication/subcode and associated explanations.

6) If there is at least one time-stamp attribute on the references and the signature value, process them, starting
from the last one, as follows: perform the time-stamp validation process (see clause 7):

a) If VALID is returned and the cryptographic hash function used in the time-stamp
(MessageImprint.hashAlgorithm) is considered reliable at the generation time of the time-stamp, perform
the POE extraction process with the signature, the time-stamp, the set of POE and the cryptographic
constraints. Add the returned POEs to the set of POEs.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)42

b) Otherwise, perform past signature validation process with the following inputs: the time-stamp, the
status/subcode returned in step 6, the TSA's certificate, the X.509 validation parameters, certificate
meta-data, chain constraints, cryptographic constraints and the set of POEs. If it returns VALID and the
cryptographic hash function used in the time-stamp is considered reliable at the generation time of the
time-stamp, perform the POE extraction process and add the returned POEs to the set of POEs. In all
other cases:

� If no specific constraints mandating the validity of the attribute are specified in the validation
constraints, ignore the attribute and consider the next archive-time-stamp attribute.

� Otherwise, fail with the returned indication/subcode and associated explanations:

7) If there is at least one signature-time-stamp attribute, process them, in the order of their appearance starting
from the last one, as follows: Perform the time-stamp validation process (see clause 7)

a) If VALID is returned and the cryptographic hash function used in the time-stamp is considered reliable at
the generation time of the time-stamp, perform the POE extraction process with the signature, the
signature-time-stamp, the set of POEs and the cryptographic constraints. Add the returned POEs to the
set of POEs.

b) Otherwise, perform past signature validation process with the following inputs: the time-stamp, the
status/subcode returned in step 7, the TSA's certificate, the X.509 validation parameters, certificate
meta-data, chain constraints, cryptographic constraints and the set of POEs. If it returns VALID and the
cryptographic hash function used in the time-stamp (MessageImprint.hashAlgorithm) is considered
reliable at the generation time of the time-stamp, perform the POE extraction process and add the
returned POEs to the set of POEs. In all other cases:

� If no specific constraints mandating the validity of the attribute are specified in the validation
constraints, ignore the attribute and consider the next archive-time-stamp attribute.

� Otherwise, fail with the returned indication/subcode and associated explanations

8) Past signature validation: perform the past signature validation process with the following inputs: the
signature, the status indication/subcode returned in step 2, the signer's certificate, the x.509 validation
parameters, certificate meta-data, chain constraints, cryptographic constraints and the set of POEs. If it returns
VALID go to the next step. Otherwise, abort with the returned indication/subcode and associated explanations.

Data extraction: the SVA shall return the success indication VALID. In addition, the SVA should return additional
information extracted from the signature and/or used by the intermediate steps. In particular, the SVA should return
intermediate results such as the validation results of any time-stamp token or time-mark. What the DA does with this
information is out of the scope of the present document.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)43

Annex A (informative):
Validation Constraints
Any requirements in this clause are extracted from other documentation. No new requirement is introduced in the
present document. The details of how to validate such constraints will not be given in the present document. Such
constraints are listed only to give a complete overview of all constraints that are considered important for the purpose of
the present document. It also is not intended as a complete list of constraints a SVA may need to consider.

The use of the any of the constraints may however be forced to be ignored by the SVA, depending on the signature
validation policy in force.

A.1 X.509 Certificate path validation constraints
The following constraints are provided for use in the certification path validation process as defined in RFC 5280 [4].
Constraints defined in the tables below may be different for different certificate types (end-entity signer's certificates,
time-stamp signing authority certificates, CA certificates, etc.)

Table A.1

Constraint Description Reference
A set of trust anchor
information

The DA provides the SVA a list of acceptable trust anchors as a
constraint for the validation process. Such TAs are recommended
to be provided in the form of (self-signed) certificates and a time
until when these trust anchors were considered reliable. The TA
information may be taken from:

• Trust points specified in signature validation policies
• Sets of trusted CAs, e.g. represented by their root

certificates stored in the environment (like certificate trust
store or list)

• Trust Service Status Lists as defined in [3]
• Trusted Lists as defined in [CD]

The DA may also provide the TA information to the SVA in one of
these forms, if applicable.

[4], [i.1], CD
2009/767/EC [i.6]
amended by CD
2010/425/EU

[i.3], [i.2]

A certification path This constraint consists in the provision of a certification path of
length 'n' from the TA down to the certificate used in creating a
signed object (e.g. the signer's certificate or a time stamping
certificate). The given certification path has to be used by the SVA
for validation of the signature.

[4]

user-initial-policy-
set

"A set of certificate policy identifiers naming the policies that are
acceptable to the DA. The user-initial-policy-set contains the
special value any-policy when not concerned about certificate
policy".

[4]

initial-policy-
mapping-inhibit

"Indicates if policy mapping is allowed in the certification path". [4]

initial-explicit-
policy

"Indicates if the path must be valid for at least one of the certificate
policies in the user-initial-policy-set".

[4]

initial-any-policy-
inhibit

"Indicates whether the anyPolicy OID should be processed if it is
included in a certificate".

[4]

initial-permitted-
subtrees

"Indicates for each name type (e.g. X.500 distinguished names,
email addresses, or IP addresses) a set of subtrees within which all
subject names in every certificate in the certification path MUST
fall".

[4]

initial-excluded-
subtrees

"Indicates for each name type (e.g. X.500 distinguished names,
email addresses, or IP addresses) a set of subtrees within which
no subject name in any certificate in the certification path may fall".

[4]

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)44

Additional Chain Constraints:

The following types of constraints will be applied in the XCV building block. Some of the constraints may be
intrinsically defined by a CA using extensions in the certificates themselves, like NameConstraints etc. SVAs are
assumed to handle such constraints as defined in the relevant. The DA may need to define initial values for these
constraints or want the SVA to handle such constraints differently (e.g. ignore them).

Table A.2

Constraint Description X.509-extension Reference
Path-Length
Constraints

Restrictions on the number of CA certificates
in a certification path.

BasicConstraints [4], [i.1], [i.2], [i.3]

Policy Constraints Defines constraints for certificate policies
referenced in the certificates.

PolicyConstraints [4], [i.1], [i.2], [i.3]

Name Constraints Defines constraints on the distinguished
names (DN) for issued certificates.

NameConstraints [4], [i.1], [i.2], [i.3]

Additional Revocation Constraints:

The following constraints will be applied when verifying the certificate validity status of the certificates during the
certification path validation process.

Table A.3

Constraint Description Reference

Revocation Checking
Constraints

Indicates requirements for checking certificate revocation.

Such constraints may specify:
• If revocation checking is required or not
• If OCSP responses or CRLs have to be used

One possible syntax/semantic for a set of requirement values
used to express such requirements is defined in
TR 102 272 [i.2] and TR 102 038 [i.3]:

"clrCheck: Checks shall be made against current CRLs

(or ARLs);
ocspCheck: The revocation status shall be checked using

OCSP RFC 2560 [i.9];
bothCheck: Both OCSP and CRL checks shall be carried

out;
eitherCheck: Either OCSP or CRL checks shall be carried

out;
noCheck: No check is mandated."

[i.2], [i.3]

Revocation Freshness
Constraints

Used to time constraints on revocation information. The
constraints may indicate the maximum accepted difference
between the issuance date of the revocation status
information of a certificate and the time of validation (see
clause 4.5) or require the SVA to only accept revocation
information issued a certain time after the signature has been
created.

present document,
clause 4.4

Revocation Info of expired
certificates

This constraint mandates the signer's certificate used in
validating the signature to be issued by a certificate authority
that keeps revocation notices for revoked certificates even
after they have expired for a period exceeding a given lower
bound (see note).

[8], [6]

NOTE: The Revocation Info of expired certificates-constraint may be more efficiently implementable by not including
such a CA in the list of trust anchors.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)45

Additional Time-Stamp Trust Constraints:

The following constraints will be applied, when applicable, on the time-stamp present in a signature:

Table A.4

Constraint Description Reference
TimestampDelay Indicates a maximum acceptable delay between the signing

time as claimed by the signer and the time included within
the signature Timestamp (i.e. AdES-T).

[i.2], [i.3]

A.2 Constraints on X.509 Certificate meta-data
The following constraints are to be applied to the signer's certificate before considering it as valid for the intended use.

Table A.5

Constraint Description Reference
QualifiedCertificate Mandates the signer's certificate used in validating the signature to be

a qualified certificate as defined in Directive 1999/93/EC [9]. This
status can be derived from:

• QcCompliance extension being set in the signer's certificate in
accordance with TS 101 862 [5];

• QCP+ or QCP certificate policy OID being indicated in the
signer's certificate policies extension (i.e. 0.4.0.1456.1.1 or
0.4.0.1456.1.2);

• The content of a Trusted service Status List;
• The content of a Trusted List through information provided in the

Sie field of the applicable service entry; or
• Static configuration that provides such information in a trusted

manner.

[5], [7], CD
2009/767/EC [i.6]
amended by CD
2010/425/EU

DTS-ESI-
000099,B.3,(h)

SSCD Mandates the end user certificate used in validating the signature to be
supported by a secure signature creation device (SSCD) as defined in
Directive 1999/93/EC [9].

This status is derived from:
• QcSSCD extension being set in the signer's certificate in

accordance with TS 101 862 [5];
• QCP+ certificate policy OID being indicated in the signer's

certificate policies extension (i.e. 0.4.0.1456.1.1);
• The content of a Trusted service Status List;
• The content of a Trusted List through information provided in the

Sie field of the applicable service entry; or
• Static configuration that provides such information in a trusted

manner.

[9], [7], CD
2009/767/EC [i.6]
amended by CD
2010/425/EU

SR 001 604 [i.10],
clause B.3 (n)

ForLegalPerson Mandates the signer's certificate used in validating the signature to be
issued by a certificate authority issuing certificate as having been
issued to a legal person.

CD 2009/767/EC [i.6]
amended by CD
2010/425/EU

SR 001 604 [i.10],
clause B.3,(l)

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)46

A.3 Cryptographic Constraints
Cryptographic constraints are applied on algorithms and parameters used when validating signed objects included in the
validation process (e.g. signature, certificates, CRLs, OCSP responses, time stamps). They will typically be represented
by a list of entries, each consisting of:

• An identifier for the algorithm.

• The type of signature to which the constraint applies (e.g. signature to be validated, signer's certificate, CA
certificates in a valid chain, TST signature, OCSP response signature, CRL signature).

• For signature algorithms: The minimum key size.

• For hash algorithms: The minimum length of the hash value, if the hash function allows for hash values of
different size.

• An expiration date: This date specifies, until when the given algorithm/key size or algorithm/hash length
combination is accepted as being strong enough.

NOTE: The expiration date is necessary to be able to check signatures in the past. An algorithm, like RSA, may
therefore appear more than once in the list, since the acceptable key size will change with time.

A.4 Constraints on Signature Elements
Table A.6

Constraint Description Reference
SigningCertificate chain constraint If the signature includes a specific chain in the

SigningCertificate signed property, it is mandated to be
part of the validated certification paths.

[1], [2], [12]

MandatedSignedQProperties Indicates the mandated signed qualifying properties that
are mandated to be present in the signature. This
includes:

• signing-time
• content-hints
• content-reference
• content-identifier
• commitment-type-indication
• signer-location
• signer-attributes
• content-time-stamp

[i.3]

SR 001 604 [i.10],
B.3,(a), (e), (i), (o)

MandatedUnsignedQProperties Indicates the mandated unsigned qualifying properties
that are mandated to be present in the signature. This
constraint may be applicable to either the signer or the
verifier. This includes:

• counter-signature
• mandated signature time-stamp (i.e. AdES-T)
• mandated LT form
• mandated archival form (-A)
• signature policy extensions

[i.3]

SR 001 604 [i.10],
B.3,(k)

Constraints on Roles This includes:

• RoleMandated
• HowCertRoles
• RoleType constraints
• RoleValue constraints
• Role constraints

[i.3]

SR 001 604 [i.10],
B.3,(m)

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)47

Annex B (informative):
Certificate Meta-Data
This annex lists types of certificate meta-data that the DA may make available to the SVA. This is data that is required
to check constraints which are e.g. part of a signature validation policy but is not or not easily available to the SVA.
Making such meta-data available to the SVA will therefore result more often in a VALID or INVALID response, where
the SVA would need to return INDETERMINATE should that information not be available.

NOTE: While some of this meta-data may be retrieved form a Trust-service Status List (TSL) or a Trusted List,
the same type of information may be available to the DA in other forms, but are semantically equivalent.

Table B.1

Meta-data Description Reference
QcStatements Declares that a certificate qualified

status can be recognized by checking
the QCStatements-extension.

[5]

QCP(+) Declares that a certificate has been
issued under a QCP(+) policy as
defined in [7].

[7]

NCP(+), LCP Declares that a certificate has been
issued under a NCP(+) or a LCP
policy, resp., as defined in [8].

[8]

QCWithSSCD Declares that when a certificate has
been issued as a qualified certificate
the private key associated with the
public key in the certificate resides
within a Secure Signature Creation
Device.

[3]

QCNoSSCD Declares that when a certificate has
been issued as a qualified certificate
the private key associated with the
public key in the certificate does not
reside within a Secure Signature
Creation Device.

[3]

QCForLegalPerson Declares that when a certificate has
been issued as a qualified certificate it
has been issued to a legal person.

[3]

WithSSCD Declares that the private key
associated with the public key in a
certificate resides within a Secure
Signature Creation Device.

NoSSCD Declares that the private key
associated with the public key in a
certificate does not reside within a
Secure Signature Creation Device.

ForLegalPerson Declares that a certificate has been
issued to a legal person.

expiredCertsRevocationInfo Declares that a CRL or OCSP issuer
issues CRL and/or OCSP responses
that keep revocation notices for
revoked certificates also after they
have expired.

[3], [6]

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)48

Annex C (informative):
Validation Examples
This clause gives some examples that aim at helping to better understand the signature validation algorithm presented in
the normative part of the present document. To achieve this goal, we run through the document step by step only for the
critical elements of the algorithm.

C.1 General remarks and assumptions
• While validating an AdDS-T signature is specified in a separate clause (see clause 8), this has been done only

to keep this special case simple. It would have been perfectly possible to use the LTV/algorithm also for the
T-form. In the examples we ignore this distinction and only present the logic behind the algorithm as
applicable to the examples chosen.

• These examples also assume that basic checks like cryptographic or format checks succeed. We concentrate on
examples showing how the fundamental properties of an AdES signature, proving the existence of certain
objects at certain times, help to validate signatures from the past.

• For all validation examples, we assume to be able to identify the signer's certificate, as it is provided within the
signature.

• We assume not to have any specific constraints on the validation process unless noted otherwise.

• We assume that a valid path to a trust anchor can be built for all certificates used unless noted otherwise.

• We assume only to have the signature as an input unless noted otherwise.

• We assume that the syntax/format of all elements is ok, that all required elements are there, that time stamps
and signatures have been calculated over the right data and no other similar basic flaws exist, unless noted
otherwise.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)49

C.2 Symbols

Figure C.1: Symbols used in examples

Figure C.1 shows the symbols used in the following graphics.

C.3 Example 1: Revoked certificate

Figure C.2: Revoked Certificate Example

In this example we look at a simple case where a certificate is revoked before subsequent validation of a signature.
Figure C.2 shows the timeline for the relevant events:

• At time t1 the certificate is issued.

• At time t2 the signature is created using the certificate.

• At time t3 a signature timestamp is created.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)50

• At time t4 the certificate is revoked.

• At time t5 we try to validate the certificate.

• All other certificates that are used in the process are assumed to being still valid.

Let us try to go through the steps involved in different signature validation scenarios for this example.

C.3.1 AdES-BES/EPES
Expected result INDETERMINATE/REVOKED_NO_POE
Rational The BES validation algorithm does not process the signature-time-stamp attribute and hence

cannot ascertain whether the signing time is before the revocation date. Hence, the validity
status is indeterminate.

Let us try to use the validation algorithm defined in clause 6:

• Identify the signer's certificate: succeeds by assumption.

• Initialize the validation constraints and parameters: Succeeds by assumption.

• Validate the signer's certificate: will return INDETERMINATE / REVOKED_NO_POE since the signers
certificate has been revoked.

The algorithm terminates with INDETERMINATE/REVOKED_NO_POE which is expected and correct.

C.3.2 AdES-T
Expected result VALID
Rational The status goes from INDETERMINATE/REVOKED_NO_POE (using the AdES-BES

validation algorithm) to VALID because the AdES-T validation algorithm will process the
signature time-stamp attribute and will find that the signing time lies before the revocation
date.

Let us try to use the AdES-T-validation algorithm defined in clause 8:

• We initialize the set of signature time-stamp tokens to the single time stamp present in the signature (step 1).

• Best-signature-time is set to current time (step 1).

• Signature validation: Perform the validation process for BES signatures (step 2). As we have seen before, this
returns INDETERMINATE/REVOKED_NO_POE, and we proceed with the rest of the algorithm, since we
hope (or know) that existing time stamps may still allow us to verify the signature.

• Verification of time-marks (step 3). No time-marks by assumption.

• Message imprint verification (step 4-a): we check the message imprint of the time stamp, which succeeds by
assumption.

• Time-stamp token validation (step 4-b): we now move to clause 7 for verifying the time stamp.

• We perform BES-validation of the signature on the time stamp token, which succeeds, since we assume that
the certificate of the TSA has neither expired nor been revoked.

• Since the previous step returned VALID, we now can assume the signature has been created before the
timestamp we can set best-signature-time to the time of the timestamp (step 4-b).

• Step 5-a compares this best signature time with the revocation date of the certificate. Since the certificate has
been revoked only after the time stamp has been generated, we can continue.

• The coherence of the time values is checked and found to be ok (step 5-c).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)51

• We have no constraints on time stamp delay (step 6), so we skip the next step.

• We now can return VALID and return the validation report generated to the DA (step 7).

C.4 Example 2: Revoked CA certificate

Figure C.3: Revoked CA Certificate

Next we look at a slightly more complex case, where the CA certificate that issued the signers certificate has been
revoked. Figure C.3 shows the timeline for the relevant events:

• At time t0 the CA certificate is issued by another CA.

• At time t1 the signers certificate is issued by that CA.

• At time t2 the signature is created using the certificate.

• At time t3 a signature timestamp is created.

• At time t4 CRLs were issued by the CA that issued the signers certificate.

• At time t5 an AdES-A is created and an archive timestamp produced.

• At time t6 CRLs were issued for the certificate of the Time Stamping Authority that issued the signature
time-stamp.

• At time t7 the certificate of the Time Stamping Authority that issued the signature time stamp expires.

• At time t8 the CA certificate is revoked.

• At time t9 we try to validate the certificate.

• All other certificates that are used in the process are assumed to being still valid.

We assume here that the TSA certificate has been issued by a different authority than the CA certificate. Let us try to go
through the steps involved in different signature validation scenarios for this example.

C.4.1 AdES-BES/EPES
Expected result INDETERMINATE/REVOKED_CA_NO_POE
Rational AdES-BES algorithm does not handle the LTV attributes.

Let us try to use the validation algorithm defined in clause 6:

• Identify the signer's certificate: succeeds by assumption.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)52

• Initialize the validation constraints and parameters: Succeeds by assumption.

• Validate the signer's certificate: will return INDETERMINATE/REVOKED_CA because the CA certificate
has been revoked.

The algorithm terminates here with INDETERMINATE/REVOKED_CA_NO_POE, which is expected and correct.

C.4.2 AdES-T
Expected result INDETERMINATE/REVOKED_CA_NO_POE
Rational AdES-T algorithm does not handle the LTV attributes. The signature-time-stamp attribute

protects only the signature value and the signing certificate but does not help when an
intermediary CA is revoked.

Let us try to use the AdES-T-validation algorithm defined in clause 8:

• We initialize the set of signature time-stamp tokens to the single signature time stamp token present in the
signature.

• Best-signature-time is set to current time.

• Signature validation: Perform the validation process for BES signatures. As we have seen before, this returns
INDETERMINATE/REVOKED_CA_NO_POE.

• Since the signature validation did not report VALID nor INDETERMINATE/REVOKED_NO_POE nor
INDETERMINATE/OUT_OF_BOUNDS, the algorithm terminates with
INDETERMINATE/REVOKED_CA_NO_POE.

C.4.3 LTV
Finally, let us do the same process using the LTV-Algorithm.

Expected result VALID
Rational INDETERMINATE turns into VALID due to the archive time-stamp which was produced at T5

before any compromising event.

We start in clause 9.2.4:

• POE initialization (step 1): we initialize the POE with all objects we have:

Content Exists at time
The signature T9
The Signers Certificate (and other certificates required to form a chain to a trust anchor) T9
Revocation Information for the Signers Certificate (as well as for all certificates required to form
a chain to a trust anchor)

T9

The signature time stamp T9
The TSA Certificate related to the signature time stamp (and other certificates required to form
a chain to a trust anchor)

T9

Revocation Information for that TSA Certificate (as well as for all certificates required to form a
chain to a trust anchor)

T9

The archive time stamp T9
The TSA Certificate related to the archive time stamp (and other certificates required to form a
chain to a trust anchor)

T9

Revocation Information for that TSA Certificate (as well as for all certificates required to form a
chain to a trust anchor)

T9

• Perform the validation process for AdES-T signatures: As we have seen before, this returns
INDETERMINATE/REVOKED_CA_NO_POE, and we proceed with the algorithm, since we hope (or know)
that existing time stamps may still allow us to verify the signature.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)53

• Archive Timestamp Validation (step 4): We move to clause 7 for verifying the archive time stamp:

- We perform BES-validation of the signature on the archive time stamp token, which succeeds, since we
assume that the certificate of the archive-TSA has neither expired nor been revoked.

• we can extract POEs at the time of the archive timestamp (see clause 9.2.3.4.4) for:

- The signature

- The Signers Certificate (and other certificates required to form a chain to a trust anchor)

- Revocation Information for the Signers Certificate (as well as for all certificates required to form a chain
to a trust anchor)

- The signature time stamp

- The TSA Certificate related to the signature time stamp (and other certificates required to form a chain to
a trust anchor)

Resulting in the following set of POEs:

Content Exists at time
The signature T5
The Signers Certificate (and other certificates required to form a chain to a trust anchor) T5
Revocation Information for the Signers Certificate (as well as for all certificates required to
form a chain to a trust anchor)

T5

The signature time stamp T5
The TSA Certificate related to the signature time stamp (and other certificates required to
form a chain to a trust anchor)

T5

Revocation Information for that TSA Certificate (as well as for all certificates required to form
a chain to a trust anchor)

T5

The archive time stamp T9
The TSA Certificate related to the archive time stamp (and other certificates required to form
a chain to a trust anchor)

T9

Revocation Information for that TSA Certificate (as well as for all certificates required to form
a chain to a trust anchor)

T9

• Steps 5 and 6 are skipped, there are no such time stamps in the signature.

• Step 7: process the signature time stamp:
We do the time stamp validation process (clause 7):

- We perform BES-validation of the signature on the time stamp token, which returns
INDETERMINATE/OUT_OF_BOUNDS_NO_POE, since the certificate of that TSA has expired.

• Since this step returned INDETERMINATE/OUT_OF_BOUNDS_NO_POE, we perform the past signature
validation process for the time-stamp (see clause 9.2.4):

- We perform the past certificate validation for the TSA certificate:

� The prospective chain can be built (we have all information in the archive).

� Since the TSA-certificate has only expired, path validation at a point in time, where the
TSA-certificate was not yet expired will succeed.

� We Perform the control-time sliding process with the following inputs: the prospective chain and
the set of POEs.

- Control-time is current time.

- We can find revocation objects for the TSA-certificate in the set of POE.

- We have proof of existence of the relevant objects at T5.

- We assume the revocation object not to be fresh and thus can now set control-time to the time
this revocation object has been created (T7).

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)54

- We apply certificate constraints and cryptographic constraints to the chain, which succeed by
assumption.

- We return with VALID and control-time T7.

� Since the current time status is INDETERMINATE/OUT_OF_BOUNDS_NO_POE and we have a
POE for the signature time-stamp at T5 before T7, the past signature validation will return VALID.

• We now do the POE-extraction process for that time stamp and get a new list of POEs.

Content Exists at time
The signature T3
The Signers Certificate (and other certificates required to form a chain to a trust anchor) T3
Revocation Information for the Signers Certificate (as well as for all certificates required to
form a chain to a trust anchor)

T4

The signature time stamp T5
The TSA Certificate related to the signature time stamp (and other certificates required to
form a chain to a trust anchor)

T5

Revocation Information for that TSA Certificate (as well as for all certificates required to form
a chain to a trust anchor)

T5

The archive time stamp T9
The TSA Certificate related to the archive time stamp (and other certificates required to form
a chain to a trust anchor)

T9

Revocation Information for that TSA Certificate (as well as for all certificates required to form
a chain to a trust anchor)

T9

• We now do the past signature validation process for the signature:

- We perform the past certificate validation for the signer's certificate:

� Certificate chain can be built by assumption.

� Certificate path validation succeeds.

� We perform the control-time sliding process for the signer's certificate:

- Control-time is current time.

- We have a POE at the current time for the CA certificate and the corresponding revocation
info status.

- Since the CA is revoked at t8, control-time takes this value (assuming that freshness does not
apply).

- We have proof of existence of the relevant objects for the signer's certificate at T3 before T8.

- We assume the revocation object to be fresh and thus do not change control-time.

- We apply certificate constraints and cryptographic constraints to the chain, which succeed by
assumption.

- We return with VALID and control-time T8.

� Since the current time status is INDETERMINATE/REVOKED_CA_NO_POE and we have a
POE for the signature at T3 before T8, the past signature validation will return VALID.

• The validation algorithm returns a final VALID plus the validation report.

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)55

Annex D (informative):
Validation process versus signature conformance levels
TS 103 171 [18] profiles the use of XAdES signatures for its use in the context of the "Directive 2006/123/EC [i.7] of
the European Parliament and of the Council of 12 December 2006 on services in the internal market" (EU Services
Directive henceforth) and any applicable context where qualified signatures are used. TS 103 172 [19] (respectively
TS 103 173 [20]) does the same for PAdES (respectively for CAdES). These documents define four conformance
levels. Namely: ST-Level (Short Term Level), T-Level (Trusted time for signature existence), LT-Level (Long Term
Level) and LTA-Level (Long Term with Archive time-stamps). These conformance levels are defined for encompassing
the life cycle of electronic signatures and are built on the AdES forms.

One of the motivations behind presenting the validation procedures in three levels (Basic Validation Process, Validation
Process for AdES-T and Long Term Validation Process) is that implementations of the SVA that aim to validate only
basic conformance levels are not obliged to implement the LTV building blocks which are much more complicated.

Table D.1 proposes a mapping between the validation processes and the conformance levels that are willing to be
validated by each of these processes:

• An SVA that implements the Long Term Validation Process (see clause 9.3) is willing to validate signatures
conformant to any of the conformance levels (ST, T, LT and LTA).

• An SVA that implements the Validation Process for AdES-T (see clause 8) is willing to validate signatures
conformant to ST, T or LT levels.

• An SVA that implements the Basic Validation Process (see clause 6) is willing to validate signatures
conformant to ST level.

Table D.1: Mapping between validation process and signature conformance levels

 Basic Validation Process Validation Process for AdES-T Long Term Validation Process
ST level X X X
T level X X
LT level X X
LTA level X

ETSI

ETSI TS 102 853 V1.1.2 (2012-10)56

History

Document history

V1.1.1 July 2012 Publication

V1.1.2 October 2012 Publication

	Intellectual Property Rights
	Foreword
	Introduction
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definitions and abbreviations
	3.1 Definitions
	3.2 Abbreviations

	4 Introduction to signature validation
	4.1 Status indication of the signature validation process
	4.2 Validation Constraints
	4.3 X.509 certificate meta-data
	4.4 Trust Management
	4.5 The concept of revocation freshness

	5 Basic Building Blocks
	5.1 Identification of the Signer's Certificate (ISC)
	5.1.1 Description
	5.1.2 Inputs
	5.1.3 Outputs
	5.1.4 Processing
	5.1.4.1 XAdES processing
	5.1.4.2 CAdES processing
	5.1.4.3 PAdES processing

	5.2 Validation Context Initialization (VCI)
	5.2.1 Description
	5.2.2 Inputs
	5.2.3 Outputs
	5.2.4 Processing
	5.2.4.1 Processing commitment type indication
	5.2.4.1.1 XAdES Processing

	5.2.4.2 Processing Signature Policy Identifier

	5.3 X.509 Certificate Validation (XCV)
	5.3.1 Description
	5.3.2 Inputs
	5.3.3 Outputs
	5.3.4 Processing

	5.4 Cryptographic Verification (CV)
	5.4.1 Description
	5.4.2 Inputs
	5.4.3 Outputs
	5.4.4 Processing

	5.5 Signature Acceptance Validation (SAV)
	5.5.1 Description
	5.5.2 Inputs
	5.5.3 Outputs
	5.5.4 Processing
	5.5.4.1 Processing AdES properties/attributes
	5.5.4.2 Processing signing certificate reference constraint
	5.5.4.3 Processing claimed signing time
	5.5.4.4 Processing signed data object format
	5.5.4.5 Processing indication of production place of the signature
	5.5.4.6 Processing Time-stamps on signed data objects
	5.5.4.7 Processing Countersignatures
	5.5.4.8 Processing signer attributes/roles

	6 Basic Validation Process
	6.1 Description
	6.2 Inputs
	6.3 Outputs
	6.4 Processing

	7 Validation Process for Time-Stamps
	7.1 Description
	7.2 Inputs
	7.3 Outputs
	7.4 Processing

	8 Validation Process for AdES-T
	8.1 Description
	8.2 Inputs
	8.3 Outputs
	8.4 Processing
	8.4.1 Message Imprint Verification of the signature-timestamp for XAdES
	8.4.2 Message Imprint Verification of the signature-time-stamp for CAdES/PAdES

	9 Validation of LTV forms
	9.1 The concept of Proof Of Existence (POE)
	9.2 Additional Building blocks
	9.2.1 Past certificate validation
	9.2.1.1 Description
	9.2.1.2 Input
	9.2.1.3 Output
	9.2.1.4 Processing

	9.2.2 Control-time sliding process
	9.2.2.1 Description
	9.2.2.2 Input
	9.2.2.3 Output
	9.2.2.4 Processing

	9.2.3 POE extraction
	9.2.3.1 Description
	9.2.3.2 Input
	9.2.3.3 Output
	9.2.3.4 Processing
	9.2.3.4.1 Extraction from a time-stamp on the signature
	9.2.3.4.2 Extraction from a time-stamp on certificates and revocation references
	9.2.3.4.3 Extraction from a time-stamp on the signature and certificates and revocation references
	9.2.3.4.4 Extraction from an archive-time-stamp
	9.2.3.4.5 Extraction from a long-term-validation attribute
	9.2.3.4.6 Extraction from a PDF document time-stamp

	9.2.4 Past signature validation process
	9.2.4.1 Description
	9.2.4.2 Input
	9.2.4.3 Output
	9.2.4.4 Processing

	9.3 Long Term Validation Process
	9.3.1 Description
	9.3.2 Input
	9.3.3 Output
	9.3.4 Processing

	Annex A (informative): Validation Constraints
	A.1 X.509 Certificate path validation constraints
	A.2 Constraints on X.509 Certificate meta-data
	A.3 Cryptographic Constraints
	A.4 Constraints on Signature Elements

	Annex B (informative): Certificate Meta-Data
	Annex C (informative): Validation Examples
	C.1 General remarks and assumptions
	C.2 Symbols
	C.3 Example 1: Revoked certificate
	C.3.1 AdES-BES/EPES
	C.3.2 AdES-T

	C.4 Example 2: Revoked CA certificate
	C.4.1 AdES-BES/EPES
	C.4.2 AdES-T
	C.4.3 LTV

	Annex D (informative): Validation process versus signature conformance levels
	History

