

AS Sertifitseerimiskeskus (Certification Centre Ltd.)

Libdigidocpp Programmer’s Guide

Document Version: 1.3

Library Version: 3.8

Last update: 09.12.2013

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 2 / 49

1. Document versions

Document information

Created on 14.03.2013

Reference Libdigidocpp Programmer’s Guide

Receiver Sertifitseerimiskeskus AS

Author Kristi Uukkivi

Version 1.3

Version information

Date Version Changes

14.03.2013 0.1 Initial draft

21.03.2013 0.2 Initial version

26.03.2013 1.0 Revised version

30.05.2013 1.1 Updates according to changes in library’s version 3.8.

18.07.2013 1.2 Added information about interoperability testing, updated
Libdigidocpp library’s implementation notes

09.12.2013 1.3 Updated according to BDOC 2.1 file format’s updates (in
comparison to BDOC 2.0 format); added Finnish certificates
support; updated chapter 5.4, added description of
validation statuses and their priorities, including “valid with
warnings” status.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 3 / 49

Table of contents

1. Document versions ... 2

2. Introduction ... 5

 About DigiDoc .. 6

 DigiDoc security model .. 6

 Format of digitally signed file ... 7

3. Overview ... 10

 References and additional resources .. 10

 Terms and acronyms ... 11

 Supported functional properties .. 12

 Component model ... 14

 Dependencies .. 15

3.5.1 Software libraries .. 15

3.5.2 XML Schemas .. 15

4. Configuring Libdigidocpp .. 17

 Loading configuration settings ... 17

 Configuration parameters .. 18

5. Using Libdigidocpp API ... 21

 Initialization .. 21

 Creating and signing a DigiDoc document .. 21

5.2.1 Creating a DigiDoc container ... 21

5.2.2 Adding data files ... 22

5.2.3 Adding signatures ... 22

 Reading and writing DigiDoc documents .. 23

 Validating signatures ... 24

5.4.1 Using the main validation method .. 24

5.4.2 Checking for additional errors/warnings ... 24

5.4.3 Determining the validation status ... 25

5.4.4 Additional information about validation .. 28

 Extracting data files ... 28

 Removing signatures and data files .. 29

 Shutting down the library ... 29

 Exception handling .. 29

6. Libdigidocpp utility program .. 31

 Creating and signing a document .. 31

 Opening document, validating signatures and extracting data files 33

 Adding signatures .. 35

 Removing signatures and data files .. 37

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 4 / 49

7. National and cross-border support ... 38

 Supported Estonian identity tokens ... 38

 Trusted Estonian Certificate Authorities .. 38

7.2.1 Supported SK live hierarchy chains ... 38

7.2.2 Supported SK test certificate hierarchy chains .. 40

 Supported Finnish Certificate Authorities .. 40

7.3.1 Supported FINeID live hierarchy chains... 41

7.3.2 Supported FINeID test certificate hierarchy chains .. 41

8. Interoperability testing ... 42

 ASiC Remote Plugtests ... 42

 DigiDoc framework cross-usability tests .. 42

9. Libdigidocpp implementation notes .. 43

Appendix 1: Sample Libdigidocpp configuration file .. 46

Appendix 2: XML schema modifications .. 47

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 5 / 49

2. Introduction

This document describes Libdigidocpp - the C++ library for OpenXAdES/DigiDoc system.

Libdigidocpp is a basic building tool for creating applications handling digital signatures, their
creation and verification. The digitally signed files are created in “DigiDoc format“ (with .ddoc
or .bdoc file extensions), compliant to XML Advanced Electronic Signatures (XAdES),
technical standard published by European Telecommunication Standards Institute (ETSI).

This document covers the following information about Libdigidocpp:

 Section 2 introduces the OpenXAdES/DigiDoc framework, its general security model
and the main file format to be used for digitally signed files.

 Section 3 gives an overview of the Libdigidocpp library by describing the supported
functionality and additional features, the general architecture of components and
describes the dependencies.

 Section 4 explains Libdigidocpp’s configuration possibilities.

 Section 5 provides samples for handling digitally signed files by using the
Libdigidocpp API’s classes and methods.

 Section 6 explains using the command line utility program of Libdigidocpp, including
sample use cases.

 Section 7 gives overview of supported Estonian and cross-border Certificate
Authorities.

 Section 8 describes the interoperability testing of BDOC 2.1 and other DigiDoc file
formats.

 Section 9 gives an overview of Libdigidocpp library’s implementation notes which
provide information about specific features of digitally signed files that are not
defined in standards or specification documents but are implemented in Libdigidocpp
library.

 Appendix 1 provides a sample digidocpp.conf configuration file.

 Appendix 2 provides a list of XML Schema modifications that have been made to the
schemas used in Libdigidocpp library.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 6 / 49

 About DigiDoc

Libdigidocpp library forms a part of the wider OpenXAdES/DigiDoc system framework which
offers a full-scale architecture for digital signature and documents, consisting of software
libraries (C, C++ and Java), web service and end-user applications such as DigiDoc Portal
and DigiDoc Client3 according to the following figure:

1. DigiDoc framework

It is easy to integrate DigiDoc components into existing applications in order to allow for
creation, handling, forwarding and verification of digital signatures and support file
encryption/decryption. All applications share common digitally signed file formats (current
versions are BDOC 2.1 and DIGIDOC-XML 1.3).

 DigiDoc security model

The general security model of the DigiDoc and OpenXAdES ideology works by obtaining proof
of validity of the signer’s X.509 digital certificate issued by a certificate authority (CA) at the
time of signature creation.

This proof is obtained in the format of Online Certificate Status Protocol (OCSP) response and
stored within the signed document. Furthermore, (hash of the) created signature is sent within
the OCSP request and received back within the response. This allows interpreting of the
positive OCSP response as “at the time I saw this digitally signed file, corresponding certificate
was valid”.

The OCSP service is acting as a digital e-notary confirming signatures created locally with a
smart card. From infrastructure side, this security model requires a standard OCSP responder.
Hash of the signature is placed on the “nonce” field of the OCSP request structure. In order to
achieve the freshest certificate validity information, it is recommended to run the OCSP
responder in “real-time” mode meaning that:

 certificate validity information is obtained from live database rather than from
CRL (Certificate Revocation List)

OCSP

DigiDoc libraries

(C, C++, Java)

WebService

 MSSP

DigiDoc3
Client

DigiDoc
portal

Application Application

CAPI/CSP
CNG/Minidriver
PKCS#11
PKCS#12

XML

ID card

Mobile phone

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 7 / 49

 the time value in the OCSP response is actual (as precise as possible)

To achieve long-time validity of digital signatures, a secure log system is employed within the
model. All OCSP responses and changes in certificate validity are securely logged to preserve
digital signature validity even after private key compromise of CA or OCSP responder. It is
important to notice that additional time-stamps are not necessary when employing the security
model described:

 time of signing and time of obtaining validity information is indicated in the OCSP
response

 the secure log provides for long-time validity without need for archival
timestamps

2. DigiDoc security model

 Format of digitally signed file

Actively used digitally signed file formats in DigiDoc system are:

 BDOC 2.1 - default format for new files in Libdigidocpp library, described in [1];

 DIGIDOC-XML 1.3 - see also [2]. NB! Libdigidocpp uses CDigiDoc library as a
base component to implement support for DIGIDOC-XML 1.3 file format.

DigiDoc system uses file extension .bdoc or .ddoc to distinguish digitally signed files
according to the described file formats. Other historical formats that were used previously are
SK-XML, DIGIDOC-XML 1.1, DIGIDOC-XML 1.2 and BDOC 1.0.

The following chapter provides an overview of BDOC 2.1 digitally signed file format which is
the preferred format for creating new signed documents in Libdigidocpp library.

The format of the BDOC 2.1 digitally signed file is based on ETSI TS 101 903 standard called
XML Advanced Electronic Signatures (XAdES) ([5]). The XAdES standard defines formats
for advanced electronic signatures that remain valid over long periods of time. The ETSI
standard TS 103 171 [10] further profiles the XAdES signature by putting limitations on
choices.

OCSP CA
database

Secure log

’I just signed the
document using
this certificate’

’When I saw this
signed document, the
corresponding
certificate was valid’

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 8 / 49

The BDOC Basic Profile (EPES profile) is an XML structure containing a single cryptographic
signature over the well-defined set of data. It does not contain any validation data for full
signature validation such as timestamps or certificate validity confirmations. The profile is
based on XAdES-EPES (Explicit Policy based Electronic Signature, see [5]).

In order to comply with the security model described in the previous chapter, it is necessary to
verify whether the signer’s certificate was valid at the (claimed) time of signing. In case of
BDOC with time-marks (TM profile), the proof of validity is obtained by using OCSP protocol.
The BDOC TM profile is compliant to XAdES LT-Level requirements. The OCSP request’s
“nonce” field is a DER-encoding of the following ASN.1 data structure:1

TBSDocumentDigest ::= SEQUENCE {

algorithm AlgorithmIdentifier,

digest OCTET STRING

}

The element digest is a hash value of the binary value of the <SignatureValue> element’s

contents, element algorithm determines the used hash algorithm as defined in RFC 5280

([9]) clause 4.1.1.2.

Original files (which were signed) along with the signature(s), validation confirmation(s) and
certificates are encapsulated within the container. As a result, it is possible to verify signature
validity without any additional external information – the verifier should trust the issuer of
signer’s certificate and the OCSP responder’s certificate.

The ETSI standard TS 102 918 [7] called Associated Signature Containers (ASiC) defines
format of container for encapsulation of signed files and signatures with extra information. The
ETSI TS 103 174 [11] profiles in further on. The container type used in case of BDOC 2.1
documents is Associated Signature Extended form (ASiC-E).

ASiC-E container is a ZIP file consisting of the following objects:

 a file named “mimetype”, containing only the following value: application/vnd.etsi.asic-
e+zip

 data files in original format.

 META-INF subdirectory, consisting of:

o manifest.xml – a file containing list of all folders and files in the container. The list
does not contain the “mimetype” file and files in META-INF subdirectory.

o signatures*.xml – one file for each signature, ‘*’ in the file’s name denotes the
sequence number of a signature (counting starts from zero). The signatures*.xml file
also incorporates certificates, validity confirmation and meta-data about the signer.

When BDOC 2.1 container is signed then all files in the container are signed, except of the
mimetype file and files in META-INF subdirectory.

1 Note: OCSP nonce field’s value is calculated differently in case of DIGIDOC-XML 1.3 and BDOC 2.1
formats. See the specification documents of these file formats for more information.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 9 / 49

3. BDOC 2.1 container’s contents

BDOC 2.0 container (ASiC-E)

Data files mimetype

manifest.xml

signatures*.xml

META-INF
subdirectory

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 10 / 49

3. Overview

The current chapter gives an overview of Libdigidocpp software library by describing the
supported functionality, the general architecture of software and hardware components that
are involved in signature creation and Libdigidocpp library’s dependencies.

 References and additional resources

[1] BDOC2.1:2013 BDOC – Format for Digital Signatures. Version 2.0:2013

https://www.sk.ee/repository/bdoc-spec21.pdf

http://id.ee/public/bdoc-spec21-est.pdf

[2] DigiDoc format DigiDoc file format

http://id.ee/public/DigiDoc_format_1.3.pdf

[3] XML-DSIG IETF RFC 3275: “XML-Signature Syntax and Processing”

http://www.ietf.org/rfc/rfc3275.txt

[4] XML-DSIG 1.1 XML Signature Syntax and Processing. Version 1.1

http://www.w3.org/TR/xmldsig-core1/

[5] XAdES ETSI TS 101 903 V1.4.2 (2010-12) – XML Advanced Electronic

Signatures

http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_

60/ts_101903v010402p.pdf

[6] OpenDocument OASIS "Open Document Format for Office Applications. Version 1.2

Part 3: Packages"

http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-

cs01-part3.html#__RefHeading__752803_826425813

[7] ASiC ETSI TS 102 918 V1.2.1 (2012-02) - Associated Signature

Containers

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_

60/ts_102918v010201p.pdf

[8] RFC6960 X.509 Internet Public Key Infrastructure Online Certificate Status

Protocol – OCSP

http://tools.ietf.org/html/rfc6960

[9] RFC5280 Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile

http://tools.ietf.org/html/rfc5280

[10] XAdES Baseline

Profile

ETSI TS 103 171 V2.1.1 (2012-03)

http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01_

60/ts_103171v020101p.pdf

https://www.sk.ee/repository/bdoc-spec21.pdf
http://id.ee/public/bdoc-spec21-est.pdf
http://id.ee/public/DigiDoc_format_1.3.pdf
http://www.ietf.org/rfc/rfc3275.txt
http://www.w3.org/TR/xmldsig-core1/
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part3.html#__RefHeading__752803_826425813
http://docs.oasis-open.org/office/v1.2/cs01/OpenDocument-v1.2-cs01-part3.html#__RefHeading__752803_826425813
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/ts_102918v010201p.pdf
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/ts_102918v010201p.pdf
http://tools.ietf.org/html/rfc6960
http://tools.ietf.org/html/rfc5280
http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01_60/ts_103171v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103171/02.01.01_60/ts_103171v020101p.pdf

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 11 / 49

[11] ASiC Baseline

Profile

 ETSI TS 103 174 V2.1.1 (2012-03)

http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01_

60/ts_103174v020101p.pdf

[12] DSA Estonian Digital Signature Act

http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X300

81K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja

[13] Release notes Libdigidocpp library’s release notes

[14] CDigiDoc CDigiDoc Programmer’s Guide

http://id.ee/public/SK-CDD-PRG-GUIDE.pdf

[15] ETSI TS

102 280 (V1.1.1)

X.509 V3 Certificate Profile for Certificates Issued to Natural Persons

http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_

60/ts_102280v010101p.pdf

[16] ESTEID profile Certificates on identity card of Republic of Estonia, version 3.3

https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf

[17] Institution

certificate profile

Profile of institution certificates and Certificate Revocation Lists,

version 1.3

https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificat

es%20and%20Revocation%20List.pdf

[18] DigiDoc libraries http://id.ee/index.php?id=30486

 Terms and acronyms

ASiC Associated Signature Containers

ASiC-E Extended Associated Signature Containers. A type of ASiC

container.

BDOC 2.1 (.bdoc) Term is used to denote a digitally signed file format which is a profile

of XAdES and follows container packaging rules based on

OpenDocument and ASiC standards. The document format has

been defined in [1], an overview is provided in chapter “2.3 Format

of digitally signed file” of the current document.

CRL Certificate Revocation List, a list of certificates (or more specifically,

a list of serial numbers for certificates) that have been revoked, and

therefore should not be relied upon.

DIGIDOC-XML

(.ddoc)

The term is used to denote a DigiDoc document format that is based

on the XAdES standard and is a profile of that standard. The current

version is 1.3 which has been described in [2].

ECDSA Elliptic Curve Digital Signature Algorithm. Digital Signature

Algorithm (DSA) which uses elliptic curve cryptography. Used as an

alternative to RSA algorithm.

http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01_60/ts_103174v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/103100_103199/103174/02.01.01_60/ts_103174v020101p.pdf
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://www.legaltext.ee/et/andmebaas/tekst.asp?loc=text&dok=X30081K6&keel=en&pg=1&ptyyp=RT&tyyp=X&query=digitaalallkirja
http://id.ee/public/SK-CDD-PRG-GUIDE.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
http://www.etsi.org/deliver/etsi_ts/102200_102299/102280/01.01.01_60/ts_102280v010101p.pdf
https://sk.ee/upload/files/ESTEID_profiil_en-3_3.pdf
https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
https://sk.ee/upload/files/SK_Profile%20of%20institution%20certificates%20and%20Revocation%20List.pdf
http://id.ee/index.php?id=30486

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 12 / 49

OCSP Online Certificate Status Protocol, an Internet protocol used for

obtaining the revocation status of an X.509 digital certificate

OCSP Responder OCSP Server, maintains a store of CA-published CRLs and an up-

to-date list of valid and invalid certificates. After the OCSP responder

receives a validation request (typically an HTTP or HTTPS

transmission), the OCSP responder either validates the status of the

certificate using its own authentication database or calls upon the

OCSP responder that originally issued the certificate to validate the

request. After formulating a response, the OCSP responder returns

the signed response, and the original certificate is either approved

or rejected, based on whether or not the OCSP responder validates

the certificate.

SK AS Sertifitseerimiskeskus (Certification Centre Ltd.). Certificate

Authority in Estonia

X.509 an ITU-T standard for a public key infrastructure (PKI) and Privilege

Management Infrastructure (PMI) which specifies standard formats

for public key certificates, certificate revocation lists, attribute

certificates, and a certification path validation algorithm

XAdES XML Advanced Electronic Signatures, a set of extensions to XML-

DSIG recommendation making it suitable for advanced electronic

signature. Specifies precise profiles of XML-DSIG for use with

advanced electronic signature in the meaning of European Union

Directive 1999/93/EC.

XML-DSIG a general framework for digitally signing documents, defines an XML

syntax for digital signatures and is defined in the W3C

recommendation XML Signature Syntax and Processing

 Supported functional properties

Libdigidocpp is a library of C++ classes offering the functionality of handling digitally signed
files in supported DigiDoc formats. The following functions are implemented:

 creating containers in supported formats and adding data files;

 signing DigiDoc documents using smart cards or other supported cryptographic
tokens;

 adding time marks and validity confirmations to digital signatures using OCSP
protocol. Note: support for using timestamps is to be implemented in the future.

 validating the digital signatures;

 extracting data files from DigiDoc document;

 removing signatures and data files.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 13 / 49

The following table describes additional functional features that are supported with
Libdigidocpp.

Feature Supported values

DigiDoc document

format

- BDOC 2.1 - the main document format to be used, described in [1].

- DIGIDOC-XML 1.3 * – alternative supported file format, described in [2].

Note that using BDOC 2.1 format is preferred for new documents.

Note: older DigiDoc file formats SK-XML, DIGIDOC-XML 1.1 and

DIGIDOC-XML 1.2 are supported only for backward compatibility in case

of digital signature verification and data file extraction operations (creating

new files and modifying existing files is not supported).

Note: BDOC 1.0 file format is not supported (files in this format are

recognized by the library but handling the files is not supported).

Signature profile

Signature profiles are based on the profiles defined by XAdES ([5]).

- TM - the default profile, actual certificates and revocation data are added

to the signed document to allow verification in future even if their original

source is not available; uses time marking. In case of BDOC 2.1

document format, the “SignaturePolicyIdentifier” element is mandatory

(see also [1]).

Signature creation

module

- PKCS#11 – in Linux and OS X environments, the default module for

singing with smart card (e.g. Estonian ID card or any other smartcard

provided that you have the external native PKCS#11 driver for it).

- CNG API/Minidriver – Microsoft CNG API and minidriver, the default

module for signing with smart card in Windows environment. By default,

a dialog window is opened for the user to choose the signing certificate

and enter PIN code.

Cryptographic

token type**

- Smart card, e.g. Estonian ID card. Supported signature creation

modules are PKCS#11 and CNG/minidriver.

Public-key

algorithm

- RSA

- ECDSA - support for ECDSA algorithm has only been tested with 256 bit

keys prime256v1(secp256r1). Testing has been carried out with

PKCS#12 software tokens (via PKCS#12 signature creation module in

digidoc-tool.cpp utility program).

* Note: DIGIDOC-XML 1.3 support has been added to Libdicidocpp via CDigiDoc library (the
C library of DigiDoc system [14]). Note that the document format is tested in Libdigidocpp
indirectly via DigiDoc3 Client desktop application which uses the library as a base layer.

** Note: usage of USB cryptostick (Aladdin eToken with Digital Stamp2 certificate) has been
tested indirectly with Libdigidocpp - testing has been carried out via DigiDoc3 Client desktop
application which uses Libdigidocpp as a base layer.

2 http://sk.ee/en/services/Digital-stamp

http://sk.ee/en/services/Digital-stamp

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 14 / 49

 Component model

The figure below describes the architecture of software and hardware components that are
used when creating signatures with Libdigidocpp library.

4. Components used in Libdigidocpp implementation when signing with smart card

Component Description

CDigiDoc C library of DigiDoc system (also known as Libdigidoc, see [14]). Used as a

base layer for implementing support for documents in DIGIDOC-XML 1.3

format and enabling some specific operations with older DigiDoc formats

(SK-XML, DIGIDOC-XML 1.1, DIGIDOC-XML 1.2).

OpenSC Set of libraries and utilities to work with smart cards, implementing

PKCS#11

PKCS#11 Widely adopted platform-independent API to cryptographic tokens (HSMs

and smart cards), a standard management module of the smart card and its

certificates

Minidriver A device driver for controlling interaction with an identity token in Windows

operating systems.

CNG API Microsoft Cryptography API: Next Generation. Programming API for

implementing cryptographic functions in Windows environment.

PC/SC Standard communication interface between the computer and the smart

card, a cross-platform API for accessing smart card readers

IFDHandler Interface Device Handler for CCID readers

CCID USB driver for Chip/Smart Card Interface Devices

Reader Device used for communication with a smart card

PC/SC

OpenSC

Libdigidocpp

PKCS#11

Reader

CCID

Reader

IFD
Handler

C Application Signing Module Host operating
system & Hardware

Minidriver

CNG API

CDigiDoc

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 15 / 49

 Dependencies

3.5.1 Software libraries

Libdigidocpp library depends on the software libraries listed below.

Base

Component

Required/

optional

Description

OpenSSL required Used for validating certificates and digest values.

XercesC required Used in case of BDOC documents: for validating the

documents according to XML Schema, reading and writing

XML.

XmlSecurityC required Used in case of BDOC documents (as an extension for

XercesC): for handling signature related components.

XSD required Used for dynamically generating C++ source code according

to XML Schemas, only used during building process of the

library. Required when building the library from source code.

ZLIB required Used when generating BDOC files in ZIP format.

Minizip required Used when creating ZIP container for BDOC file. If the

component is not found from system then bundled version

with source code is used. Forms a part of ZLIB component.

CDigiDoc/

Libdigidoc

optional Used for handling digitally signed files in DIGIDOC-XML

format (with .ddoc extension). Libdigidocpp acts as a wrapper

for CDigiDoc library. See also [14].

PKCS11 optional Used for searching for default PKCS#11 driver in the system

so that its path could be registered in configuration entries.

Doxygen optional Used for generating API documentation from source code.

SWIG optional Used for creating C# bindings.

3.5.2 XML Schemas

Several XML schemas are used when creating digitally signed documents in BDOC 2.1 file
format and validating their structure. The schemas are included in etc/schema/ subdirectory
of the Libdigidocpp distribution package, their description is given in the table below.

Note: some modifications have been made to some of the schemas. Differences in
comparison with the original schemas are listed in Appendix 2 of the current document.

Schema file Description

OpenDocument_manifest.

xsd

OASIS OpenDocument v1.0 ([6])

Defines the structure of META-INF/manifest.xml file in BDOC

container.

https://www.oasis-

open.org/committees/download.php/12570/OpenDocument-

manifest-schema-v1.0-os.rng

https://www.oasis-open.org/committees/download.php/12570/OpenDocument-manifest-schema-v1.0-os.rng
https://www.oasis-open.org/committees/download.php/12570/OpenDocument-manifest-schema-v1.0-os.rng
https://www.oasis-open.org/committees/download.php/12570/OpenDocument-manifest-schema-v1.0-os.rng

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 16 / 49

ts_102918v010201.xsd Associated Signature Containers (ASiC) ([7])

Defines the format of container for encapsulating the signed

documents, signatures and additional information.

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.0

1_60/

xmldsig-core-schema.xsd XML Signature Core Schema Instance (XML-DSIG) ([3])

Defines XML syntax for digital signatures.

http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/xmldsig-

core-schema.xsd

XAdES.xsd XML Advanced Electronic Signatures (XAdES) ([5])

Defines a set of extensions to XML-DSIG making it suitable for

advanced electronic signature.

http://uri.etsi.org/01903/v1.3.2/old/XAdES.xsd

conf.xsd Configuration properties’ schema. Defines the Libdigidocpp

configuration file’s digidocpp.conf structure (see also “4

Configuring Libdigidocpp”). “

The following figure describes dependencies between the abovementioned schemas
(direction of the arrow indicates the direction of dependency).

5. Dependencies between XML Schemas

BDOC 2.0
document

Open-
Document

ASiC

XML-DSIG

XAdES

http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/
http://www.etsi.org/deliver/etsi_ts/102900_102999/102918/01.02.01_60/
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/xmldsig-core-schema.xsd
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/xmldsig-core-schema.xsd
http://uri.etsi.org/01903/v1.3.2/old/XAdES.xsd

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 17 / 49

4. Configuring Libdigidocpp

The following subchapters describe configuration settings for handling BDOC 2.1 files.
Information about applying configuration settings for DIGIDOC-XML 1.3 files has been
provided in CDigiDoc Programmer’s Guide [14].

 Loading configuration settings

Libdigidocpp uses XML configuration file named digidocpp.conf. Configuration file’s structure
is defined with XML schema “conf.xsd” - the file is included in etc/schema/ subdirectory of
Libdigidocpp package. For a sample configuration file, see Appendix 1.

It is possible to use two types of configuration files: global and user’s file. Global file can be
used to determine system-wide settings that cannot be altered by a user’s file – it can be done
separately for each parameter in the file by setting the parameter’s “lock” attribute value to
“true”. User’s file can be used to determine user-specific parameter values.

It is possible to use only one configuration file (either global or user’s file) or two files in parallel.
In the latter case, the matching user file’s parameter entries overwrite global file’s entries, if
the respective parameter is not defined as locked in the global file.

By default, the configuration file’s settings are loaded during the library’s initialization –
Libdigidocpp looks for global and user configuration files from their default locations depending
on the environment:

 in case of Windows environment:

o the global configuration file is looked up from the directory where digidocpp.dll library
file is located. If the directory doesn’t contain /schema subdirectory then the
configuration file is looked up from the current working directory.

o user configuration file is looked up from the system directory containing application
data for the current user: %APPDATA%\digidocpp\digidocpp.conf

 in case of OS X:

o the global configuration file is looked up from a location in the file system:
digidocpp.framework/Resources/digidocpp.conf

o user configuration file is looked up from $HOME/.digidocpp/digidocpp.conf

 in case of Linux environment:

o the global configuration file is looked up from a location in the file system:
/etc/digidocpp/digidocpp.conf

o user configuration file is looked up from $HOME/.digidocpp/digidocpp.conf

It is also possible to load global configuration file from a non-default location. In this case, call
out the configuration file’s initialization method before initializing the library:

// Initialize global configuration settings from a non-default location
Conf::init(new XmlConf(“<file-path-and-name>”));

// then initialize the library
digidoc::initialize();

Local configuration settings can also be set or modified during runtime by calling out the
respective set methods of XmlConf class.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 18 / 49

 Configuration parameters

Configuration file’s elements and their attribute names are defined in conf.xsd file.

Below is a description of the configuration file’s parameters. The attribute “lock”, when set to
“true” can optionally be used to determine parameter values which should not be overwritten
by another configuration file (e.g. when using global and user’s configuration files in parallel;
see also the previous section for more information).

Logging settings

Parameter name Comments

log.file Location of the log file where the logging output is written, e.g.
/tmp/digidocpp.log or C:\Temp\digidocpp.log
If left unspecified then the logging output is written to standard output
stream.

log.level Used for controlling the level of detail of the logging output messages,
higher number value indicates higher level of detail. Possible values are:
1 – error messages,
2 – warning messages,
3 – info messages,
4 – debug messages.

PKCS#11 settings

Parameter name Comments

pkcs11.driver.path PKCS#11 driver library to be used when communicating with the smart
card.
With Estonian ID cards for example, the following PKCS#11 libraries are
used:
opensc-pkcs11.so (used in Linux environment)
opensc-pkcs11.dll (used in Windows environment)

CA certificate settings

The CA certificates are used to check if the signer’s certificate has been issued by a trusted
CA.

This parameter enables determining a directory in file system containing trusted CA certificates
(in PEM format). If left unspecified then the CA certificates are loaded from default locations:

 in case of Windows environment - the native Windows certificate store;

 OS X environment - digidocpp.framework/Resources/certs;

 Linux environment - /etc/digidocpp/certs.

Libdigidocpp supports Estonian and Finnish CA certificates. The Estonian live CA and OCSP
certificate files have been included in the Libdigidocpp distribution; Finnish live certificates
have to be installed with a separate package, accessible from
https://installer.id.ee/media/windows/Eesti_ID_kaart_finsertifikaadid.msi

Both Estonian and Finnish test certificates have to be installed separately and can be
accessed from https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi.

More information about the supported CA-s and certificates can be found from chapter “7
National ”.

SK issued live CA and OCSP certificate files are included in the Libdigidocpp distribution but
the test certificate files are not. In order to use the test certificates, you need to install them
separately (the installation package is accessible from
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi).

https://installer.id.ee/media/windows/Eesti_ID_kaart_finsertifikaadid.msi
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 19 / 49

Note: test certificates should not be used in live applications as the Libdigidocpp library does
not give notifications to the user in case of test signatures. In case of live applications, the test
certificates should be removed.

Parameter name Comments

cert.store.path Directory in file system which contains trusted CA certificates, e.g.
C:\certs

XML Schema settings

Parameter name Comments

xsd.path Path to the XML schemas that are used for validating DigiDoc files’
structure, e.g. C:\schemas

See also section “3.5.2 XML Schemas” for more information.

HTTP proxy settings

The following settings need to be specified only if using a proxy to access internet.

Parameter name Comments

proxy.host Specifies the proxy hostname, e.g. proxy.example.net

proxy.port Specifies the proxy port, e.g. 8080

proxy.user Specifies the proxy username.

proxy.pass Specifies the proxy password.

Settings for signing OCSP requests

Whether you need to sign the OCSP requests sent to your OCSP responder or not depends
on your responder.

Some OCSP servers require that the OCSP request is signed. To sign the OCSP request, you
need to obtain and specify the certificates, which will be used for signing.

For example, accessing the SK’s OCSP Responder service by private persons requires the
requests to signed (access certificates can be obtained through registering for the service3)
whereas in case of companies/services, signing the request is not required if having a contract
with SK and accessing the service from specific IP address(es). It is not necessary to sign
OCSP requests in case of using OCSP test-responder (see the next sub-section for more
information).

By default, the parameter “pkcs12.disable” value is set to “true” – i.e. the OCSP requests will
not be signed. If setting this to “false”, you will also need to provide your access certificate
file’s location and password that have been issued to you for this purpose.

Parameter name Comments

pkcs12.disable Specifies if the OCSP requests are signed or not. Possible values are:
true – OCSP requests are not signed;
false – OCSP requests are signed.

pkcs12.cert Specifies your access certificate’s PKCS#12 container’s filename, e.g.
./home/132936.p12d

pkcs12.pass Specifies your access certificate’s PKCS#12 container’s password, e.g.
m15eTGpA

3 https://sk.ee/getaccess/index.php?lang=eng

https://sk.ee/getaccess/index.php?lang=eng

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 20 / 49

OCSP responder settings

OCSP responder settings are used during signature creation, when adding OCSP
confirmation to a signature and during signature validation, when validating the signer’s
certificate and OCSP response.

The default address provided (http://ocsp.sk.ee) is for the real-life OCSP Responder address
to be used for Estonian ID cards.

The OpenXAdES OCSP Responder address (http://www.openxades.org/cgi-bin/ocsp.cgi)
can be used for testing purposes. For more information on using the OpenXAdES testing
environment, please refer to http://www.id.ee/?lang=en&id=35755.

Note that in case of Finnish live ID-cards, OCSP confirmation is acquired from proxy OCSP
service (http://sk.ee/en/services/validity-confirmation-services/proxy-ocsp/). The OCSP
responder server URL value (http://ocsp.sk.ee/_proxy) has been written directly into the
source code and cannot be configured.

OCSP parameter
name

Comments

ocsp issuer The “issuer” parameter’s name stands for OCSP responder certificate
issuer’s Common Name (CN) value, e.g. ESTEID-SK 2007.

The element’s value specifies OCSP responder server’s URL address.
There are separate URLs for accessing SK’s live and test OCSP responder
services:
http://ocsp.sk.ee - live environment
http://www.openxades.org/cgi-bin/ocsp.cgi - testing environment

http://ocsp.sk.ee/
http://www.openxades.org/cgi-bin/ocsp.cgi
http://www.id.ee/?lang=en&id=35755
http://sk.ee/en/services/validity-confirmation-services/proxy-ocsp/

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 21 / 49

5. Using Libdigidocpp API

Libdigidocpp library offers creating, signing and verification of digitally signed documents,
according to XAdES [5] and XML-DSIG [3] standards. In next chapters a short introduction is
given on the main API calls used to accomplish the above mentioned.

For additional information about the classes and methods described in the following
subchapters, see the full API description (created with Doxygen) that is included in the
Libdigidocpp library’s distribution package.

See also chapter “3.3 Supported functional properties” for an overview of supported document
formats, signature profiles, signing modules, etc.

Note that Libdigidocpp uses internal memory buffers in case of all the operations, so that
intermediary data is not written to temporary files on the disk. Also, the data files to be added
to a DigiDoc container can be read from a data stream and later extracted from the container
to a stream so that the data can be kept in memory.

 Initialization

Libdigidocpp’s initialization method initializes dependent libraries (see also chap. “3.5.1
Software libraries”), loads configuration settings from default configuration files and initializes
certificate store according to default settings (either the system’s native certificate store or a
directory containing the trusted certificates). The default configuration settings are described
in chap. “4.1 Loading configuration settings”.

If you would like to use non-default settings then call out the configuration file’s initialization
before initializing the library, for example:

using namespace digidoc;

// Optionally initialize global configuration file to use non-default settings
Conf::init(new XmlConf(“<file-path-and-name>”));

// Initialize the library
digidoc::initialize();

 Creating and signing a DigiDoc document

5.2.1 Creating a DigiDoc container

Create a new container object and specify the DigiDoc document’s type, for example:

Container doc(Container::AsicType);

Container class is used to incorporate the data of a DigiDoc document. The supported
container types are defined in Container.h, with the DocumentType enumeration:

 AsicType – creates new BDOC 2.1 document with mime-type
"application/vnd.etsi.asic-e+zip". The document format is described in chapter “2.3
Format of digitally signed file”.

 DDocType – creates new DIGIDOC-XML 1.3 document. Note that using BDOC 2.1
format is preferred for new documents. Support for DIGIDOC-XML 1.3 format has
been added to Libdigidocpp via CDigiDoc library [14]. Note that usage of this
document format is tested only indirectly via DigiDoc3 Client desktop application
which uses CDigiDoc as a base layer.

Note: the functionality of creating new files in DigiDoc file formats SK-XML, DIGIDOC-XML
1.1, DIGIDOC-XML 1.2 and BDOC 1.0 is not supported.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 22 / 49

5.2.2 Adding data files

Data files can be added to a DigiDoc container in two alternative ways:

1. adding the data from an input stream (i.e. the data file contents can be read from
internal memory buffer):

void Container::addDataFile(std::istream *is, // input stream
const std::string &fileName, // file name that is written to
// the container
const std::string &mediaType); // mime type of the data file

2. adding the data by reading the it from file system

void Container::addDataFile(const std::string &path, //data file’s name and
 // path in file system

const std::string &mediaType); // mime type of the data file

Parameter mediaType in the methods above stands for a MIME type of the data file, for
example “text/plain” or “application/msword”. Value “application/octet-stream” is used by
default.

Calling out any of the methods listed above shall create a new DataFile object and add it to
the DigiDoc container’s data file collection.

Note that in order to add a data file to a container, the container has to be unsigned and there
shouldn’t be an existing data file with the same name in the container. If a container is signed
then it is possible to add data files to it only after the signatures are removed.

5.2.3 Adding signatures

It is possible to add a signature to a container only if it contains at least one data file, multiple
signatures can be added to a single container. The signer’s certificate4 and PIN code to access
the private signature key are required during signing.

Signing can be done by using different modules for accessing the signature token:

- PKCS#11 module - the default module for singing with smart card (e.g. Estonian ID
card or any other smartcard provided that you have the external native language
PKCS#11 driver for it).

- Microsoft CNG API and minidriver for signing with smart card in Windows
environment. By default, a dialog window is opened for the user to choose the
signing certificate and enter PIN code.

To start adding signatures, firstly declare pointer to the Signature object to be created:

Signature *signature = 0;

Next, we create the signature and its OCSP confirmation and add them to the DigiDoc
container. Note that the OCSP responder settings should be configured before calling out the
methods in the following examples (see also chap. “4.2 Configuration parameters”, under
“OCSP responder settings”).

Create the signature according to the module that is used for accessing the signing token as
described in the following sections.

5.2.3.1 Signing with PKCS#11 module

PKCS11Signer *signer = new PKCS11Signer("<PKCS11-driver-path>"); // optionally
// specify PKCS#11 driver’s location. If left unspecified then location is

4Signing can be done with a certificate that has “Non-Repudiation” value set in its “Key
Usage” extensions field. See also chap. “9 Libdigidocpp implementation notes”.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 23 / 49

// looked up from configuration file’s parameter "pkcs11.driver.path".

signer->setPin("<pin-code>"); //PIN2 in case of Estonian ID cards

Optionally specify additional signer’s data:

std::string city, state, postalCode, country;
std::vector<std::string> roles;
signer->setSignatureProductionPlace(city, state,

postalCode, country); // location where the signature is created
signer->setSignerRoles(roles); // role(s) of the signer

Create the signature:

signature = doc.sign(signer);

If you would like to add PIN insertion dialog window for the signer to enter the PIN code then
you can write a new class which extends the PKCS11Signer class, overwrite the std::string
pin(const X509Cert &cert) method and write your own PIN dialog implementation code there.

5.2.3.2 Signing via Microsoft CNG API (in Windows environment)

// Variables for optional signer’s data
std::string city, state, postalCode, country, pin;
std::vector<std::string> roles;
bool selectFirst;

signature = doc.sign(

city, state, postalCode, country, // optionally set the signing location
roles, // optionally specify the signer’s role(s)
pin,
selectFirst);

By default, when signing via CNG API then a dialog window is displayed to the user for
choosing the signing certificate and inserting PIN code. However, the default behaviour can
be changed with parameters “pin” and “selectFirst” of the above mentioned method:

- if input parameter “pin” is specified when calling out the method then the specified PIN
value is used for signing and dialog window for PIN insertion is not displayed to the user.

- boolean parameter “selectFirst”, if set to “true”, determines that the first signing
certificate that is found from the certificate store is chosen for signature creation and the
certificate selection’s dialog window is not displayed to the user.

5.2.3.3 Validating the created signatures

After the signature has been added to the container, it should be validated before writing the
signed container to an output file. For validating the signature, do as follows:

signature->validate();

The validation method above validates the signed data files’, signer certificate’s and OCSP
confirmation’s correspondence to the signature value. Note that the validation method above
does not validate other signatures which may belong to the same container.

 Reading and writing DigiDoc documents

In order to read an existing DigiDoc file from the file system, do as follows:

Container doc("<input-file’s-path>");

The method above reads in the DigiDoc file from the specified location in file system and
creates the respective Container object representing the document’s data. The file’s structure

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 24 / 49

is also validated during its parsing according to the corresponding standards (see also [2] for
DIGIDOC XML 1.3 documents and [1] for BDOC 2.1 documents).

Write a DigiDoc file (represented with a Container object) to file system with the following
method:

doc.save("<output-file’s-path>");

 Validating signatures

Validation of a signed DigiDoc document consists of three main steps:

1. Call out the main validation method of the library. If there are multiple validation
errors then get the errors list.

2. Check for additional errors/warnings (separate implementation);

3. Determine the validation status of the document (according to the returned error
codes and validation status priorities).

5.4.1 Using the main validation method

You can validate a signature and its OCSP confirmation with method:

void Signature::validate();

If an exception is thrown from the validation method then the signature can be either INVALID
or VALID WITH WARNINGS; otherwise the signature is VALID. Before determining the final
validation status, additional errors must be checked, as described in the following chapters.

If an exception is thrown then its causes can be retrieved with the following method:

vector<Exception> Exception::causes();

5.4.2 Checking for additional errors/warnings

There are validation cases that are not checked in the default validation method of the library,
instead, separate methods for checking the specific situations have to be implemented by the
library’s user. In Libdigidocpp library, checking for a test signature and old file format must
be done separately.

The following subchapters describe how these checks can be implemented. After checking for
additional errors/warnings, collect all of the error codes and continue with determining the
validation status as described in the next chapter.

5.4.2.1 Checking for test signature

Test signature is a signature that has been created by using test certificates (e.g. signer’s
certificate and/or OCSP responder server’s certificate have been issued for testing purposes).

Sample code for checking for test signature can be found from digidoc-tool.cpp utility program,
method:

open(int argc, char* argv[]); //utility program’s command “open”

For identifying if a certificate is a SK issued test certificate, you can use the following method
as a sample code:

type(const X509Cert &cert, bool ocsp);

The identification is done with comparing certificate policy OID values.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 25 / 49

5.4.2.2 Checking for old file formats

Sample for checking old versions can be found from two sources.

1. CDigiDoc library’s utility program’s source code in cdigidoc.c source file, method

cmdReadDigiDoc(SignedDoc** ppSigDoc, DEncEncryptedData** ppEncData, int
nMode); //utility program’s command -in

The check for old file formats is implemented in method:

 checkOldFormatVer(SignedDoc* pSigDoc);

2. It is possible to check the source code of DigiDoc3 Client desktop application,
accessible from https://svn.eesti.ee/projektid/idkaart_public/trunk/qdigidoc/.

5.4.3 Determining the validation status

After validating the signed DigiDoc document, the validation result must be determined by the
library’s user. Final validation result must be one of the possible validation statuses that are
described in the table below, the status must be chosen according to its priority.

The validation status priorities have to be applied in two cases:

1. Returning a validation result of a single signature:

If there are more than one validation errors that occur when validating a single

signature in DigiDoc container then the overall status of the signature should be

chosen according to the status priorities.

2. Returning a validation result of the whole DigiDoc container:

If there are more than one signatures in a DigiDoc container and the signatures have

different validation statuses or validation of the container structure returns a different

status then the overall status of the DigiDoc file should be chosen according to the

status priorities.

NB! User of the library has to determine the validation status according to the error

code that is returned by the library’s validation method.

Priority Status Error code Description

1
INDETERMINA
TE/UNKNOWN

10

CertificateIssuer
Missing (signer’s
certificate is
unknown)

6

CertificateUnkno
wn (OCSP
responder
certificate is
unknown)

Validation process determines that one or more of
the certificates included in the document are
unknown or not trusted, i.e. the certificates have been
issued by an unknown Certificate Authority (the CA
has not been added to trusted list).

Notes:

 The file and signature(s) are not legally valid.

 If the CA will later be added to the trusted
list/trust store then the validation status can
change to any of the other statuses described in
the current table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Signature status is displayed as
unknown if you don’t have all validity confirmation
service certificates and/or certificate authority
certificates installed into your computer”

More info: http://www.id.ee/index.php?id=35941

Sample file: SS-4_teadmataCA.4.asice

https://svn.eesti.ee/projektid/idkaart_public/trunk/qdigidoc/
http://www.id.ee/index.php?id=35941

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 26 / 49

Priority Status Error code Description

2 INVALID

All errors except
of the ones that
are regarded as
warnings by the
library’s user.

Validation process returns error(s), the errors have
not been explicitly determined as minor error(s) by
the library’s user.

Note:

 The file and signature(s) are not legally valid.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

3 TEST

N/A

(Separate error
code has not
been determined.
See also chap.
5.4.2.1)

Test certificates have been used in the signed file
(e.g. signer’s certificate and/or OCSP responder
server’s certificate have been issued in testing
purposes).

Notes:

 Test signature is not legally binding even if the
signature is valid.

 This status is used in combination with the other
validation statuses described in the current
table.

Suggested warning message (also displayed in

DigiDoc3 Client): “Test signature”

More info: http://www.id.ee/index.php?id=30494

 Sample file: aladdin3.6.ddoc

4
VALID WITH
WARNINGS

See the next
section.

Validation process returns error(s) that have been
previously explicitly categorized (by the library’s
user) as minor technical errors. Note that this status
is used only in exceptional cases, more details of
which are given in the next chapter.

Notes:

 The file and signature(s) are handled as legally
valid.

 The error(s) are regarded as validation
warnings.

 Validation warnings should be displayed to the
user.

 No further alterations should be made to the file,
i.e. no signatures should be added or removed.

 Creator of the file should be informed about the
error situation.

5 VALID N/A
Validation process returns no errors. The signature is
legally valid.

The error codes described in the table above are defined in Exception.h source file.

Sample code of DigiDoc file validation can be found from digidoc-tool.cpp utility program, from
the following method:

open(int argc, char* argv[]); //utility program’s command “open”

5.4.3.1 Validation status VALID WITH WARNINGS

In special cases, validation errors can be regarded as minor technical errors and the file’s
validation status can be regarded as VALID WITH WARNINGS instead.

NB! User of the DigiDoc library has to decide on his/her own when to use VALID WITH
WARNINGS status instead of INVALID: there may be different interpretations of the severity
of validation errors in different information systems then the final decision when to use this

http://www.id.ee/index.php?id=30494

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 27 / 49

status has to be made by the library’s user according to the requirements of the specific
information system.

It is recommended to use the validation status VALID WITH WARNINGS in case of the error
situations that are included in the table below - these error situations are regarded as VALID
WITH WARNINGS in DigiDoc applications and software libraries, including:

 DigiDoc3 Client desktop application,

 JDigiDoc, Libdigidocpp and CDigiDoc software libraries’ utility programs.

Table 1. Validation error codes recommended to be handled as VALID WITH WARNINGS

Status Error code
Related
DigiDoc

file format
Description

VALID WITH
WARNINGS

12

RefereneceDigest
Weak

13

SignatureDigestWe
ak

BDOC
2.1

Weaker digest method (SHA-1) has been used
than recommended when calculating either
<Reference> or <Signature> element’s digest
value.

Suggested warning message (also displayed
in DigiDoc3 Client):

“The current BDOC container uses weaker
encryption method than officially accepted in
Estonia.”

Sample file: 23147_weak-warning-sha1.bdoc

14

DataFileNameSpac
eWarning

DDOC
1.0

DDOC
1.1

DDOC
1.2

DDOC
1.3

<DataFile> element’s xmlns attribute is
missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: 18912.ddoc

15

IssuerNameSpace
Warning

DDOC
1.1

DDOC
1.2

DDOC
1.3

<IssuerSerial><X509IssuerName> and/or
<IssuerSerial><X509SerialNumber> element’s
xmlns attribute is missing.

Suggested warning message (also displayed

in DigiDoc3 Client): “This DigiDoc documents
has not been created according to
specification, but the digital signatures is
legally valid. You are not allowed to add or
remove signatures to this container.”

More info: http://www.id.ee/?id=36213

Sample file: 20bait_nonce.ddoc

http://www.id.ee/?id=36213
http://www.id.ee/?id=36213

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 28 / 49

Status Error code
Related
DigiDoc

file format
Description

N/A

(Separate error
code has not been
determined. See
also chap. 5.4.2.2)

DDOC
1.0

DDOC
1.1

DDOC
1.2

DigiDoc file’s version is older than currently
supported. Note that the error situation affects
only the container and not the signatures,
therefore, in DigiDoc libraries, it is returned
and displayed only at container level.

Suggested warning message (also displayed

in DigiDoc3 Client): “The current file is a
DigiDoc container that is not supported
officially any longer. You are not allowed to
add or remove signatures to this container”

More info:

http://www.id.ee/index.php?id=36161

Sample file: DigiDoc 1.0

(tartu_ja_tallinna_koostooleping).ddoc

Sample code for determining validation warnings can be found from digidoc-tool.cpp utility
program, see command open, function validate().

5.4.4 Additional information about validation

5.4.4.1 Overview of validation activities

Overview of validation activities is as follows:

1. checking that all the data files and signature’s meta-data (signer’s role, etc.) are
included in the signature by calculating the data objects’ digest values and
comparing them with the <Reference> element values in the signature;

2. checking that the claimed signer’s certificate is the actual certificate that was used
for signing; checking that the “Non-repudiaton” value is set in the “Key Usage”
extension of the signer’s certificate;

3. checking that the signature value is correct by decrypting the value with the signer’s
public key and comparing the result with digest calculated from <SignedInfo>
element block;

4. checking that the OCSP response confirms the signer certificate’s validity and
corresponds to the signature value (by comparing the digest value of
<SignatureValue> element’s value and OCSP response’s nonce value);

5. checking that the signer’s and OCSP responder’s certificates are trusted (i.e. the
certificates’ issuers are registered in trust store).

 Extracting data files

A data file can be extracted from container and written to the specified location in the file
system or to an output stream.

1. You can write the data file to a stream and keep it in memory:

void DataFile::saveAs(std::ostream &os);

2. The file can be written to file system with the following method:

void DataFile::saveAs(const std::string& path);

List of all the document’s data files can be retrieved with the following method:

http://www.id.ee/index.php?id=36161

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 29 / 49

DataFileList Container::dataFiles();

For example, read in a DigiDoc document and write its data files to file system as follows:

Container doc("<input-file’s-path>"); // read in a document
DataFileList files = doc.dataFiles(); // get the data files’ list

for(DataFileList::const_iterator i = files.begin(); i != files.end(); ++i){

try {
std::string dst = i->fileName(); // get the data file’s name
i->saveAs(dst); // save the data file to working directory

} catch(const Exception &e) {
printf(" Document %s extraction: FAILED\n", i->fileName().c_str());

}
}

 Removing signatures and data files

In order to remove a signature from DigiDoc document, use the following method:

void Container::removeSignature(unsigned int id);

Data files can be removed from a container only after all of its signatures have been removed.
Use the following method to remove a data file from DigiDoc container:

void Container::removeDataFile(unsigned int id);

“Id” parameters of the abovementioned methods represent the signature’s and data file’s
sequence numbers in the container. The identifiers are determined when a data file or
signature is added to the container, counting starts from zero.

Note: the functionality of modifying files in DigiDoc file formats SK-XML, DIGIDOC-XML 1.1,
DIGIDOC-XML 1.2 and BDOC 1.0 is not supported.

 Shutting down the library

After finishing work with Libdigidocpp, then the last task is to shut down the library:

digidoc::terminate();

The termination method closes libraries used in Libdigidocpp implementation and deletes
temporary files that may have been written to disk when working with the library.

 Exception handling

The Libdigidocpp library may throw exceptions that are instances of Exception class (defined
in Exception.h source file). The code which uses Libdigidocpp’s API should be wrapped in a
try/catch block as follows:

try {

// code implementation

} catch(const Exception &e) {
 printf("Exception:%s\n", parseException(e).c_str()); // Sample exception

 // handling method
}

An Exception instance thrown by the library may contain a stack trace of the hierarchy of
exceptions. For example, to parse the whole stack trace, do as follows:

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 30 / 49

std::string parseException(const Exception &e)
{
 std::string result = e.msg() + "\n"; // the error message is retrieved
 Exception::Causes list = e.causes(); // list of exceptions in lower level
 // Iteration through the list of causes:
 for(Exception::Causes::const_iterator i = list.begin(); i != list.end(); ++i)
 result += parseException(*i); // Parsing the exceptions recursively
 return result; // The error message is returned
}

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 31 / 49

6. Libdigidocpp utility program

The command line utility program digidoc-tool.exe which is included in the Libdigidocpp
distribution can be used to test the library or simply use it directly to handle digitally signed
documents.

The general format for executing the program is:

> digidoc-tool [command] [options] [input/output file]

 Creating and signing a document

Command “create” can be used to create a new DigiDoc container, add data files, optionally
some meta-info about the signer and sign the document. Documents can be created only in
BDOC 2.1 format.

General form of the command is:

> digidoc-tool create --file=<data-file> <output-bdoc-file>

Available options:

--file= Required

Data file(s) to be signed. The option can occur multiple times.

--pin= Optional

If PIN is not provided with this parameter value and (the default) PKCS#11
module is used for signing then the utility program asks for the user to insert
PIN code to command line during the program’s execution time.

--city= Optional

City where the signature is created.

--state= Optional

State or province where the signature is created.

--postalCode= Optional

Postal code of the place where the signature is created.

--country= Optional

Country of origin. ISO 3166-type 2-character country codes are used (e.g.
EE)

--role= Optional

Signer’s role(s). The option can occur multiple times.

--sha(1,224,

256,384,512)

Optional

Used for testing purposes. Specifies the hash function that is used for
calculating digest values. If not specified then SHA-256 is used by default.

Options for specifying module used for accessing the signing token - possible alternatives are
PKCS#11 and CryptoAPI/CNG). When signing module is not specified then PKCS#11 module
is used by default.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 32 / 49

--pkcs11[=] Optional

Signing is done via PKCS#11 module - the default module for singing with
smart card in Linux and OS X. When signing via PKCS#11 module then
the parameter’s value can be used to specify the path and filename of
PKCS#11 driver in your file system. For example, “opensc-pkcs11.dll” in
Windows environment and “opensc-pkcs11.so” in Linux.

If the parameter’s value is left unspecified then PKCS#11 driver’s location
is looked up from configuration file (see also chap. “4.2 Configuration
parameters”).

--cng Optional

Set the parameter to sign via Microsoft CNG API (in Windows
environment). If “--pin” parameter’s value is not set then PIN insertion
dialog is displayed to the user. Parameter “--cng” may optionally be used
along with parameter “--selectFirst”.

--selectFirst Optional

Additional parameter that can optionally be used along with parameter “–
cng”. When the parameter is set then the first certificate in Windows
certificate store is chosen for signature creation. If the parameter is not set
then certificate selection dialog window is displayed to user.

Note: there is also PKCS#12 signing module support implemented in Libdigidocpp utility
program which is used for testing signature creation with ECC keys. More detailed description
about usage scenarios is to be determined in the future.

Sample commands for creating and signing DigiDoc files:

Sample: creating new BDOC file, adding multiple data files and signing via
PKCS#11 driver
> digidoc-tool create --file=file1.txt --file=file2.pdf --country=Estonia
--state=Harjumaa --city=Tallinn --postalCode=12345 --pkcs11 demo-container.bdoc

Input:
 - file1.txt - a data file to be added to container
 - file2.pdf - a data file to be added to container
 - Estonia - country where the signature is created
 - Harjumaa - county where the signature is created
 - Tallinn - city where the signature is created
 - 12345 - postal code of the signature creation location
 - --pkcs11 - signing is done via PKCS#11 module
 - demo-container.bdoc - container to be created (in BDOC2.0 format)

Sample: creating new BDOC file, adding data file and signing via CNG API
> digidoc-tool create --file=file1.txt --cng demo-container.bdoc

Input:
 - file1.txt - a data file to be added to container
 - --cng - CNG API is used for signing
 - demo-container.bdoc - container to be created (in BDOC2.0 format)

Sample: creating new BDOC file, adding data file and signing via CNG API, dialog
windows for certificate selection and PIN insertion are not displayed
> digidoc-tool create --file=file1.txt --cng --selectFirst --pin=01497 demo-
container.bdoc

Input:
 - file1.txt - a data file to be added to container

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 33 / 49

 - --cng - CNG API is used for signing
 - --selectFirst - the first signing certificate in store is used for

signing
 - 01497 - PIN code (PIN2 in case of Estonian ID cards)
 - demo-container.bdoc - container to be created (in BDOC2.0 format)

 Opening document, validating signatures and
extracting data files

Command “open” enables to read in an existing DigiDoc document, print out a list of its
contents and validate signatures. By specifying the additional option --extractaAll, then the
data files are extracted from the container and stored on the disk. All DigiDoc file formats are
supported with this command (except of BDOC1.0).

General form of the command is:

> digidoc-tool open <input-container-file>

Available options:

--extractAll Optional

If set, then all of the input container’s data files are extracted and written to
disk. If an output directory is not specified with the value of this parameter
then the extracted files are written to the same directory where the input
file is located.

--warnings=
(ignore,
warnings,
error)

Optional

Enables to choose the displaying of validation warnings (if present) of the
file being opened. Can be used to test the warnings system of the utility
program (see also “Validation status VALID WITH WARNINGS”).

The options include:

- warnings – the default value used. The minor technical errors
that are considered as warnings, are printed out as warnings.

- error – the errors that are otherwise considered as warnings (by
the utility program), are printed out as errors.

- ignore – the errors that are otherwise considered as warnings
(by the utility program), are not printed out. If there are any other
errors present then these are treated as usual.

Output of the default command contains the following data of the container:

 Container type: <container’s mime-type>
 Documents (<number of data files in container>):
 Document (<data file’s mime-type>): <file’s name> (<file’s size> bytes)
 Signatures (<number of signatures in container>):
 Signature <signature’s sequence number> (<signature’s profile>):
 Validation: <signature validation result: OK/FAILED>
 EPES policy: urn:oid: <signature policy identifier OID>
 SPUri: <URL to the BDOC 2.1 specification document>
 Signature method: <signature method URI>
 Signing time: <signing time according to computer’s settings (not the

 official signing time)>

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 34 / 49

 Signing cert: <subject CN field’s value>
 Produced At: <time of OCSP response’s issuance, i.e. official signing time>
 OCSP Responder: <OCSP responder certificate CN field’s value>
 OCSP Nonce (<length in bytes>): <OCSP responses nonce field’s value (has to

 correspond to the <SignatureValue> element’s hash)>
 Warnings: <possible validation related warnings (see explanation below)>

Note: by default, if the signature validation process discovered errors that are regarded as
minor technical errors in digidoc-tool.cpp utility program then the document is considered as
VALID WITH WARNINGS, the errors are printed out as warnings to the end user. See also
chapter “5.4.3 Determining the validation status”.

Sample commands for validating signatures and extracting data files:

Sample: opening BDOC container, listing its contents and validating signatures
> digidoc-tool open demo-container.bdoc

Input:
 - demo-container.bdoc - input DigiDoc file which contents are listed and

signatures validated
Output:
 Container type: application/vnd.etsi.asic-e+zip
 Documents (2):
 Document (application/octet-stream): file1.txt (434 bytes)
 Document (application/octet-stream): file2.pdf (476841 bytes)
 Signatures (1):
 Signature 0 (EPES/time-mark):
 Validation: OK
 EPES policy: urn:oid:1.3.6.1.4.1.10015.1000.3.2.1
 SPUri: https://www.sk.ee/repository/bdoc-spec21.pdf
 Signature method: http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
 Signing time: 2013-03-13T08:48:13Z
 Signing cert: MÄNNIK,MARI-LIIS,47101010033
 Produced At: 2013-05-14T23:41:20Z
 OCSP Responder: TEST of SK OCSP RESPONDER 2011
 OCSP Nonce (51): 30 31 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20
 10 35 D7 45 F1 42 C1 0C 4D 96 EA 1A 13 C4 34 28 B0 8A 0A 07 47 AA 96 72 0D
 3B 1C C9 02 D0 4B 15

Sample: opening BDOC container, listing its contents and validating signatures
(warnings are displayed as SHA-1 hash function is used in a BDOC file)
> digidoc-tool open weak-sha.bdoc

Input:
 - weak-sha.bdoc - input BDOC 2.1 file which contents
 are listed and signatures validated
Output:
 Container type: application/vnd.etsi.asic-e+zip
 Documents (1):
 Document (application/octet-stream): test.txt (314 bytes)
 Signatures (1):
 Signature 0 (EPES/time-mark):
 Validation: OK
 EPES policy: urn:oid:1.3.6.1.4.1.10015.1000.3.2.1
 SPUri: https://www.sk.ee/repository/bdoc-spec21.pdf
 Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 35 / 49

 Signing time: 2012-11-13T11:04:32Z
 Signing cert: MÄNNIK,MARI-LIIS,47101010033
 Produced At: 2012-11-13T11:04:45Z
 OCSP Responder: TEST of SK OCSP RESPONDER 2011
 OCSP Nonce (51): 30 31 30 0D 06 09 60 86 48 01 65 03 04 02 01 05 00 04 20

10 35 D7 45 F1 42 C1 0C 4D 96 EA 1A 13 C4 34 28 B0 8A 0A 07 47 AA 96 72 0D
3B 1C C9 02 D0 4B 15

 Warnings: RefereneceDigestWeak, SignatureDigestWeak,

Sample: opening container, extracting its data files
> digidoc-tool open --extractAll demo-container.bdoc

Input:
 - demo-container.bdoc - input DigiDoc file that is extracted

Output:
 Extracting documents:
 Document(application/octet-stream) extracted to file1.txt (434 bytes)
 Document(application/octet-stream) extracted to file2.pdf (476841 bytes)

Sample: opening container, extracting its data files to a specific directory
> digidoc-tool open --extractAll=demo demo-container.bdoc

Input:
 - demo-container.bdoc - input DigiDoc file that is extracted

Output:
 Extracting documents:
 Document(application/octet-stream) extracted to demo/file1.txt (434 bytes)
 Document(application/octet-stream) extracted to demo/file2.pdf (476841 bytes)

 Adding signatures

Command “sign” enables adding signatures to existing DigiDoc containers. The supported
DigiDoc document formats are DIGIDOC-XML 1.3 and BDOC 2.1.

> digidoc-tool sign <modified-digidoc-container>

Available options:

--city= Optional

City where the signature is created.

--state= Optional

State or province where the signature is created.

--postalCode= Optional

Postal code of the place where the signature is created.

--country= Optional

Country of origin. ISO 3166-type 2-character country codes are used (e.g.
EE)

--role= Optional

Signer’s role(s). The option can occur multiple times.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 36 / 49

--pin= Optional

If PIN is not provided with this parameter value and (the default) PKCS#11
module is used for signing then the utility program asks for the user to insert
PIN code to command line during the program’s execution time.

--sha(1,224,

256,384,512)

Optional

Used for testing purposes. Specifies the hash function that is used for
calculating digests. If not specified then SHA-256 is used by default.

Options for specifying module used for accessing the signing token - possible alternatives are
PKCS#11 and CryptoAPI/CNG). When signing module is not specified then PKCS#11 module
is used by default.

--pkcs11[=] Optional

Signing is done via PKCS#11 module - the default module for singing with
smart card in Linux and OS X. When signing via PKCS#11 module then
the parameter’s value can additionally be used to specify the path and
filename of PKCS#11 driver in your file system. For example, “opensc-
pkcs11.dll” in Windows environment and “opensc-pkcs11.so” in Linux.

If the parameter’s value is left unspecified then PKCS#11 driver’s location
is looked up from configuration file (see also chap. “4.2 Configuration
parameters”).

--cng Optional

Set the parameter to sign via Microsoft CNG API (in Windows
environment). If “--pin” parameter’s value is not set then PIN insertion
dialog is displayed to the user. Parameter “--cng” may optionally be used
along with parameter “--selectFirst”.

--selectFirst Optional

Additional parameter that can optionally be used along with parameter “–
cng”. When the parameter is set then the first certificate in Windows
certificate store is chosen for signature creation. If the parameter is not set
then certificate selection dialog window is displayed to user.

Note: there is also PKCS#12 signing module support implemented in Libdigidocpp utility
program which is used for testing signature creation with ECC keys. More detailed description
about usage scenarios is to be determined in the future.

Sample commands for adding signatures:

Sample: adding a signature via PKCS#11 driver
> digidoc-tool sign --pkcs11 demo-container.bdoc

Input:
- --pkcs11 - PKCS#11 module is used for signing
- demo-container.bdoc - container to be modified

Sample: adding a signature via CNG API
> digidoc-tool sign --cng demo-container.bdoc

Input:
- --cng - CNG API is used for signing
- demo-container.bdoc - container to be modified

Sample: adding a signature via CNG API, no dialog windows are displayed
> digidoc-tool sign --cng --selectFirst --pin=12345 demo-container.bdoc

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 37 / 49

Input:
- --cng - CNG API is used for signing
- --selectFirst - the first signing certificate is used for signing
- 12345 - PIN code (PIN2 in case of Estonian ID cards)
- demo-container.bdoc - container to be modified

 Removing signatures and data files

Signatures and data files can be removed from a DigiDoc container with the command
“remove”. Note that it is possible to remove data files only from an unsigned container (i.e all
signatures must be removed before removing data files). The command is supported with
DigiDoc formats DIGIDOC-XML 1.3 and BDOC 2.1.

General format of the command is:

> digidoc-tool remove --document=<doc-id> --signature=<sig-id> <modified-digidoc-
container>

Available options:

--document= Optional

Specifies the sequence number of the data file that is removed from the
container. The sequence numbers are counted from zero.

--signature= Optional

Specifies the sequence number of the signature that is removed from the
container. The sequence numbers are counted from zero.

Sample commands for removing signatures and data files:

Sample: removing signature from container
> digidoc-tool remove --signature=1 demo-container.bdoc

Input:
- 1 - sequence number of the signature that is removed
- demo-container.bdoc - container to be modified

Sample: removing data files from container
> digidoc-tool remove --document=0 --document=1 demo-container.bdoc

Input:
- 0 - sequence number of the data file that is removed
- 1 - sequence number of the data file that is removed
- demo-container.bdoc - container to be modified

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 38 / 49

7. National and cross-border support

 Supported Estonian identity tokens

Currently, Libdigidocpp library is tested with the following Estonian ID tokens:

Token Type Description
Supported Libdigidocpp
functionality

EstEID 3.5,
3.4 and 1.0

Certificate–based
PKI smart cards

Different Estonian ID
card versions.

All Libdigidocpp functionalities
(authentication, signing, verification,
encryption/decryption)

Digi-ID

(since 2010)

Certificate–based
PKI smart card

Estonian Digital ID card
for use only in
electronic environments

All Libdigidocpp functionalities

Aladdin
eToken Pro

Certificate–based
PKI USB
authenticator

Carrier for ID
certificates issued to
organizations.

Note: Supported and tested using

the DigiDoc3 Client application,
which is based on the Libdigidocpp
library.

 Trusted Estonian Certificate Authorities

AS Sertifitseerimiskeskus (SK, http://sk.ee/en) functions as CA for all the Estonian ID
tokens, maintains the electronic infrastructure necessary for issuing and using the ID cards,
and develops the associated services and software.

SK issues the certificates and acts as Trusted Service Provider (TSP) for validation of
authentication requests and digital signatures. SK maintains the following electronic services
for checking certificate validity including:

 OCSP validation service (an RFC2560-compliant OCSP server, operating directly
off the CA master certificate database and providing validity confirmations to
certificates and signatures). There are two ways of getting access the service:

o having a contract with SK and accessing the service from a specific IP
address(es) – as practiced by companies/services

o by having certificate for accessing the service and sending signed requests -
as used by private persons for giving digital signatures; registering for the
service is required and service is limited to 10 signatures per month

 CRL-s (mainly for backward compatibility)

 LDAP directory service (containing all valid certificates)

7.2.1 Supported SK live hierarchy chains

Note: the following certificates are included in the Libdigidocpp distribution package, no
additional actions are needed for their usage.

Certificate Common Name (CN) Valid to Description

JUUR-SK 26-Aug-2016 SK’s 1st root certificate

 ESTEID-SK 13-Jan-2012 for ID cards issued until
2007

 ESTEID-SK OCSP
RESPONDER

24-Mar-2005 ESTEID-SK OCSP
Responder

http://sk.ee/en

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 39 / 49

Certificate Common Name (CN) Valid to Description

 ESTEID-SK OCSP
RESPONDER 2005

12-Jan- 2012 ESTEID-SK OCSP
Responder

 ESTEID-SK
2007

 26-Aug-2016 for ID cards, Digi-ID and
Mobile-IDs issued until
06.2011

 ESTEID-SK 2007
OCSP
RESPONDER

08-Jan-2010 ESTEID-SK 2007 OCSP
Responder

 ESTEID-SK 2007
OCSP
RESPONDER 2010

26-Aug-2016 ESTEID-SK 2007 OCSP
Responder

 EID-SK 08-May-2014 for all other personal
certificates issued until
01.2007

 EID-SK 2007 OCSP
RESPONDER

15-May-2007 EID-SK OCSP Responder

 EID-SK 2007 26-Aug-2016 for Estonian Mobile-IDs
issued until 02.2011 and
Lithuanian Mobile IDs
issued until 06.2011

 EID-SK 2007 OCSP
RESPONDER

17-Apr- 2010 EID-SK 2007 OCSP
Responder

 EID-SK 2007 OCSP
RESPONDER 2010

26-Aug- 2010 EID-SK 2007 OCSP
Responder

 KLASS3-SK 05-May-2012 for organizational
certificates issued until
10.2010

 KLASS3-SK OCSP
RESPONDER

05-Apr- 2006 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2006 RESPONDER

27-Mar-2009 KLASS3-SK OCSP
Responder

 KLASS3-SK OCSP
2009 RESPONDER

04-May- 2012 KLASS3-SK OCSP
Responder

 KLASS3-SK
2010

 26-Aug-2016 for organizational
certificates issued from
10.2010

 KLASS3-SK 2010
OCSP
RESPONDER

26-Aug- 2016 KLASS3-SK 2010 OCSP
Responder

EECCRCA 18-Dec- 2030 SK’s 2nd root certificate

 ESTEID-SK
2011

 18-Mar- 2024 for ID cards, Digi-ID and
Mobile-IDs issued from
06.2011

 EID-SK 2011 18-Mar- 2024 for all other personal
certificates issued from
06.2011

 KLASS3-SK
2010

 18-Mar-2024 for organizational
certificates.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 40 / 49

Certificate Common Name (CN) Valid to Description

 SK OCSP
2011
RESPONDER

 18-Mar- 2024 common OCSP
responder for all
certificates issued under
EECCRCA

7.2.2 Supported SK test certificate hierarchy chains

Note: in order to use the test certificates with Libdigidocpp, you need to add them separately.
The default installation package contains both Estonian and Finnish test certificates (the
installation package is accessible from
https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi). All of the
certificates can also be downloaded from http://www.sk.ee/en/repository/certs/.

Note that the test certificates should not be used in live applications as the Libdigidocpp library
does not give notifications to the user in case of test signatures.

Certificate Common Name (CN) Valid to Description

Test JUUR-SK 27-Aug-2016 SK’s 1st test root
certificate

 TEST-SK 26-Aug-2016 for all test cards and
certificates issued until
04.2011

 Test-SK OCSP
RESPONDER 2005

06-Apr-2012 TEST-SK OCSP
responder

 TEST of
KLASS3-SK
2010

 21-March-
2025

for organizational test
certificates

TEST EECCRCA 18-Dec-2030 SK’s 2nd test root
certificate

 TEST of
ESTEID-SK
2011

 07-Sep-2023 for test ID cards, Digi-ID
and Mobile-ID certificates
issued from 04.2011

 TEST of EID-
SK 2011

 07-Sep-2023 for all other test
certificates issued from
04.2011

 Test SK OCSP
RESPONDER
2011

 07-Sep-2024 common OCSP responder
for all test certificates
issued under TEST-
EECCRCA

 Supported Finnish Certificate Authorities

Population Registration Center’s Certification Authority Services unit (FINeID,
http://fineid.fi/) functions as certificate authority in Finland.

Libdigidocpp supports the following functionality with Finnish certificates and identity tokens:

 signature creation with CAPI/minidriver in Windows environment;

 adding OCSP confirmation to the signature;

o OCSP confirmation is acquired from AS Sertifitseerimiskeskus proxy OCSP
service (http://sk.ee/en/services/validity-confirmation-services/proxy-ocsp/).

http://www.sk.ee/en/repository/certs/
http://fineid.fi/
http://sk.ee/en/services/validity-confirmation-services/proxy-ocsp/

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 41 / 49

The OCSP responder server URL values (http://ocsp.sk.ee/_proxy) have
been written directly into the source code.

 signature validation - the CA certificates for signature validation are taken from the
Windows certificate store.

Note that the functionality has only been tested in Windows environment.

7.3.1 Supported FINeID live hierarchy chains

Note: in order to use the Finnish certificates with Libdigidocpp, you need to add them
separately. The installation package is available from
https://installer.id.ee/media/windows/Eesti_ID_kaart_finsertifikaadid.msi

The certificates package contains Finnish root CA certificate
(http://fineid.fi/default.aspx?id=596) and certificates which are included in the Finnish national
Trust Service List (TSL) (https://www.viestintavirasto.fi/attachments/TSL-Ficora.xml).

Certificate Common Name (CN) Valid to Description

VRK Gov. Root CA 18-Dec-2023 1st root certificate

 VRK Gov. CA for
Citizen Qualified
Certificates

09-Jan-2019 Citizen certificates on identity cards
since 2003

 VRK CA for Qualified
Certificates

13-Jan-2019 Organization certificates on
organization cards since 2003

 VRK CA for
Healthcare
Professionals
Qualified Certificates

17-Dec-2023 Intermediary CA of the certificates
for users of the nationwide
healthcare information systems

7.3.2 Supported FINeID test certificate hierarchy chains

Note: in order to use the test certificates with Libdigidocpp, you need to install them separately
(the installation package which includes both Estonian and Finnish test certificates is
accessible from https://installer.id.ee/media/windows/Eesti_ID_kaart_testsertifikaadid.msi).
The test certificates are also separately downloadable from http://fineid.fi/default.aspx?id=597.

Note that the test certificates should not be used in live applications as the Libdigidocpp library
does not give notifications to the user in case of test signatures.

Certificate Common Name (CN) Valid to Description

VRK TEST Root CA 17-Dec-2023 1st test root certificate

 VRK CA for Test
Purposes

12-Jan-2019 Test certificates since 2003

https://installer.id.ee/media/windows/Eesti_ID_kaart_finsertifikaadid.msi
http://fineid.fi/default.aspx?id=596
https://www.viestintavirasto.fi/attachments/TSL-Ficora.xml
http://fineid.fi/default.aspx?id=597

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 42 / 49

8. Interoperability testing

 ASiC Remote Plugtests

The compliance of the BDOC 2.1 containers to ASiC standard [7] was successfully tested in
the course of ASiC Remote Plugtests Event (19 November to 07 December 2012). The event
aimed to ascertain the correctness and cross usability of ASiC-S and ASiC-E containers
created by different participant organizations worldwide. The test cases included generation
and cross-verification of ASiC containers with different features (including verification of
incorrect files). Each participant chose the appropriate set of tests to be implemented.

The main BDOC 2.1 project coordinator, AS Sertifitseerimiskeskus (SK), participated in the
ASiC Remote Plugtests event. The selected test cases were implemented with Libdigidocpp
(C++) software library of DigiDoc system. Tests that were carried out by SK included
functionality that was also applicable for BDOC 2.1 file format [1]. Features that were tested
included generation and cross-verification of ASiC-E containers with XAdES signatures [5].
The following test cases were covered:

 testing ASiC-E container structure,

 testing ASiC-E container’s syntactical conformance,

 testing correctness of XAdES-BES signature in ASiC-E container,

 negative tests of verifying ASiC-E container with invalid XAdES-BES signatures.

The implemented test cases did not cover generation and verification of signatures with time-
marks or time-stamps (according to BDOC-TM and BDOC-TS profiles).

Results achieved by SK were as follows:

 test files that were generated by SK were successfully cross-verified by five different
participants in 4 out of 6 implemented positive test cases (two of the test files were
not verified by other participants).

 SK successfully cross-verified files generated by other three participants in 5 out of 6
implemented positive test cases (one of the files could not be verified because of
incompatibility with BDOC 2.1 standard).

 SK successfully passed the negative test case which involved verification of
incorrect test file.

Additional information about the ASiC Remote Plugtests event can be found from
http://www.etsi.org/plugtests/ASiC/Home.htm.

 DigiDoc framework cross-usability tests

Automated cross-usability tests of digitally signed and encrypted files are periodically carried
out between different DigiDoc software libraries [18]:

 Cross-usability tests of digitally signed files in DIGIDOC-XML 1.3 format (.ddoc files)
are carried out between JDigiDoc and CDigiDoc software libraries.

 Cross-usability of BDOC 2.1 (.bdoc or .asice) file format is tested between JDigiDoc
and Libdigidocpp libraries.

 Cross-usability of encrypted file format CDOC 1.0 is carried out between JDigiDoc
and CDigiDoc software libraries.

The interoperability tests are executed through the command line utility tools of the
software libraries (for example, in case of Libdigidocpp library, the utility program which is
described in chapter 6 of the current document).

http://www.etsi.org/plugtests/ASiC/Home.htm

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 43 / 49

9. Libdigidocpp implementation notes

The following section describes properties of a BDOC 2.1 file that are not strictly defined in
the BDOC 2.1 specification [1] but are used in Libdigidocpp library’s implementation (and also
in other DigiDoc software libraries) of the file format.

Digital signature related notes:

1. The supported BDOC 2.1 signature profile is a XAdES-EPES profile with time-mark.

The basic BDOC profile is XAdES-EPES as BDOC 2.1 specification requires that
<SignaturePolicyIdentifier> element is present ([1], chap. 5.2).

It is expected that a time-mark (OCSP confirmation) has been added to the
signature as according to BDOC 2.1 specification ([1], chap. 6) a signature is not
considered complete or valid without validation data from external services (i.e. a
time-mark or time-stamp).

2. Signatures with time-stamps (i.e. BDOC TS profile) are not supported (including
archive time-stamps) and will be implemented in the future. Validation data must be
added to the signature with a time-mark (according to BDOC 2.1 specification [1],
chap. 6.1).

3. One OCSP confirmation (time-mark) is allowed for each signature (due to security
reasons and in order to maintain testing efficiency).

4. In case of BDOC signatures with time-mark, the OCSP nonce field’s value is
calculated as follows:

- the contents of <SignatureValue> element (i.e. the value without XML tags) is
taken and decoded from base64 encoding;

- digest of the value found in the previous step is calculated by using SHA-256
algorithm.;

- the digest value found in the previous step and the digest algorithm that was used
are transformed as defined by the following ASN.1 structure:

TBSDocumentDigest ::= SEQUENCE {

algorithm AlgorithmIdentifier,

digest OCTET STRING

}

- the ASN.1 block value produced in the previous step is included in the OCSP
request’s “nonce” field and must be present in the respective field of the OCSP
response.

5. In case of signing with ECC keys (by using ECDSA algorithm), concatenation
method is used for creating signature value.

6. In case of BDOC 2.1 documents, SHA-256 hash function is used by default when
calculating data file digests and the digest that is signed. In case of Estonian ID
cards with certificates issued before 2011, the SHA-224 digest type will be
automatically selected and used for calculating signature value’s digest (the final
digest that is signed), other options are not supported here. Note that other digest in
the signature (e.g. data file digests, signer certificate’s digest) are still calculated with
SHA-256 (the default digest type).

7. When a hash function that is weaker than SHA-256 (or SHA-224 in the special case
with pre-2011 ID-cards) has been used then a warning message about weak digest
method is produced to the user. It is recommended to regard the error as a
validation warning (identically to DigiDoc3. Client application and digidoc-tool.cpp
utility program).

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 44 / 49

8. During signature creation, it is checked that there is only one <ClaimedRole>
element in the signature, which contains the signer’s role and optionally the signer’s
resolution. If the <ClaimedRole> element contains both role and resolution then they
must be separated with a slash mark, e.g. “role / resolution”. Note that when setting
the resolution value then role must also be specified.

9. The signature policy document’s hash value in <SigPolicyHash> element is checked
during validation process (even though it is not mandatory according to BDOC 2.1
specification [1], chap. 5.2). The hash value must correspond to the hash value of
the document that is located at https://www.sk.ee/repository/bdoc-spec20.pdf.

10. <Transforms> element is not supported for security purposes and in order to
maintain testing efficiency.

11. XML namespace prefixes are used in case of all XML elements (e.g. “asic:”, “ds:”,
“xades:”).

12. The data file’s MIME type that is used in case of Libdigidocpp’s utility program is
always “application/octet-stream” for testing purposes.

13. The <ds:Signature> element’s Id attribute value is set to “S<seq_no>” during
signature creation where sequence numbers are counted from zero. Other Id values
that are used in the sub-elements of the <ds:Signature> element contain the
signature’s Id value as a prefix. During verification, different Id attribute values are
also supported but are not tested periodically.

Certificate related notes:

1. Valid signatures (qualified electronic signatures) can be created with a certificate
that has “Non-repudiation” value (also referred to as “Content Commitment”) in its
“Key usage” field. The requirement is based on the following sources:

- ETSI TS 102 280 (V1.1.1): “X.509 V3 Certificate Profile for Certificates
Issued to Natural Persons” [15]; chap. 5.4.3;

- Profile of certificates issued to private persons by AS Sertifitseerimiskeskus:
“Certificates on identity card of Republic of Estonia”, version 3.3 [16];
appendix A.3.3;

- Profile of certificates issued to legal entities by AS Sertifitseerimiskeskus:
“Profile of institution certificates and Certificate Revocation Lists”, version
1.3 [17]; chap. 3.2.2.

2. Signature can be created with a certificate that doesn’t have “Non-repudiation” value
in its “Key-Usage” field when specific parameters have been set but validation of
such signature will produce a respective error message and the signature is not
considered as a qualified electronic signature.

3. During signature validation, it is checked that the validity periods of the signer’s
certificate and all the certificates in its CA chain include the signature creation time
(value of the producedAt field in OCSP response).

Container related notes:

1. BDOC 2.1 files are created with .bdoc file extension. Extensions .asice and .sce are
supported and recognized only when reading in an existing BDOC 2.1 file which has
the respective extension value.

2. Signatures are stored in META-INF/signatures*.xml files where ‘*’ is a sequence
number, counting is started from zero.

3. There can be only one signature in one signatures*.xml file due to BDOC format’s
legacy issues. Multiple signatures in one signatures*.xml file is not supported in
order to maintain testing efficiency. The <ds:Signature> element’s Id attribute values

https://www.sk.ee/repository/bdoc-spec20.pdf

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 45 / 49

in different signatures*.xml files are generated in the form of “S<seq_no”, the
sequence numbers are always unique within one BDOC container.

4. It is not allowed to add two data files with the same name to the container as the
signed data file must be uniquely identifiable in the container.

5. All data files in the container must be signed. All signatures in the container must
sign all of the data files.

6. The META-INF/manifest.xml file’s version attribute value is “1.0” (instead of “1.2”) as
the results of ASiC plug-tests event shows that version 1.0 is used only. The
requirement of the OpenDocument version attribute value comes from
OpenDocument standard [6] which is referred to in ASiC standard [7].

7. Relative file paths are used, for example “META-INF/signatures*.xml” and
“document.txt” instead of “/META-INF/signatures*.xml” and “/document.txt” to ensure
better interoperability with third party applications when validating signatures.

8. The ZIP container’s comment field contains version number of the library that was
used for creating the file. The value can be useful, for example, when trying to
determine the origin of an erroneous file.

9. “mimetype" file is not compressed in the BDOC 2.1 file’s ZIP container as the results
of ASiC plug-tests event shows that this solution is most widely used.

10. When a data file is added to the container then the modification time of the file (as it
is registered in the file system) is preserved also in the ZIP container file. There is an
exception if the file is added by reading it from an input stream - in that case, the
current timestamp value is registered as “last modified” time in the ZIP file.

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 46 / 49

Appendix 1: Sample Libdigidocpp configuration file

A sample digidocpp.conf file has been provided below. For detailed information about
loading configuration settings and the meanings of the configuration parameters, see chapter
”4 Configuring Libdigidocpp”.

<?xml version="1.0" encoding="UTF-8"?>

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="schema/conf.xsd">

<!--Logging settings-->

 <param name="log.level" lock="false">2</param>

 <!--<param name="log.file" lock="false">/tmp/digidocpp.log</param>-->

 <param name="log.file" lock="false">C:\test\CPP\digidocpp.log</param>

<!--PKCS#11 driver’s location, if not using default driver-->

<param name="pkcs11.driver.path" lock="false">opensc-pkcs11.dll</param>

<!--<param name="pkcs11.driver.path" lock="false">opensc-pkcs11.so</param>-->

<!--CA certificates’ location, if not using default settings-->

 <param name="cert.store.path" lock="false"></param>

<!--Location of XML Schema files, if not using the default settings-->

 <param name="xsd.path" lock="false">schema/</param>

 <!--HTTP proxy settings, if needed-->

 <!--<param name="proxy.host" lock="false"></param>-->

 <!--<param name="proxy.port" lock="false"></param>-->

 <!--<param name="proxy.user" lock="false"></param>-->

 <!--<param name="proxy.pass" lock="false"></param>-->

<!--OCSP request signing options-->

 <param name="pkcs12.cert" lock="false"></param>

 <param name="pkcs12.pass" lock="false"></param>

 <param name="pkcs12.disable" lock="false">false</param>-->

 <!--OCSP responder settings for live OCSP service-->

 <ocsp issuer="ESTEID-SK 2007">http://ocsp.sk.ee</ocsp>

 <ocsp issuer="ESTEID-SK 2011">http://ocsp.sk.ee</ocsp>

 <ocsp issuer="KLASS3-SK 2010">http://ocsp.sk.ee</ocsp>

 <!--OCSP responder settings for test OCSP service-->

 <ocsp issuer="TEST of ESTEID-SK 2011">http://www.openxades.org/cgi-bin/ocsp.cgi</ocsp>

 <ocsp issuer="TEST of KLASS3-SK 2010">http://www.openxades.org/cgi-bin/ocsp.cgi</ocsp>

</configuration>

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 47 / 49

Appendix 2: XML schema modifications

The following section describes modifications that have been made to XML schemas used in
Libdigidocpp. The library uses several XML schemas when creating digitally signed
documents and validating their structure. The schemas are included in etc/schema/
subdirectory of the Libdigidocpp distribution package, their description has been provided in
section “3.5.2 XML Schemas”.

Modifications are marked as follows:

 text that has been added is marked as added

 text that has been deleted is marked as deleted

1) Schema ts_102918v010201.xsd

 The namespace value has been changed as the initial value in the original schema
was incorrect. The value in original schema will be corrected with the next version of
the ASiC standard.

<xsd:schema targetNamespace="http://uri.etsi.org/291802918/v1.2.1#"

 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

xmlns="http://uri.etsi.org/291802918/v1.2.1#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 The schema’s location has been altered so that the imported schema file is looked
up from the local file system.

<xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-

schema.xsd"/>

2) Schema xmldsig-core-schema.xsd

 The XMLSchema.dtd reference has been commented out due to implementation
issues (otherwise a warning message would be produced).

<!--

<!DOCTYPE schema

 PUBLIC "-//W3C//DTD XMLSchema 200102//EN" "http://www.w3.org/2001/XMLSchema.dtd"

 [

 <!ATTLIST schema

 xmlns:ds CDATA #FIXED "http://www.w3.org/2000/09/xmldsig#">

 <!ENTITY dsig 'http://www.w3.org/2000/09/xmldsig#'>

 <!ENTITY % p ''>

 <!ENTITY % s ''>

]>

-->

 The initial integer data type used in the original schema is converted into long data
type when generating C++ source code from the current schema. However, as the

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 48 / 49

SK issued certificates’ serial numbers are too long to fit into long type variable then
the data type has been changed to string.

<complexType name="X509IssuerSerialType">

 <sequence>

 <element name="X509IssuerName" type="string"/>

 <element name="X509SerialNumber" type="integerstring"/>

 </sequence>

</complexType>

3) Schema XAdES.xsd

 The schema’s location has been modified so that the file is looked up from the local
file system.

 <xsd:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/xmldsig-core-

schema.xsd"/>xmldsig-core-schema.xsd"/>

 The “type” attribute has been added, otherwise a warning message would be
produced.

 <xsd:complexType name="SignaturePolicyIdentifierType">

 <xsd:choice>

 <xsd:element name="SignaturePolicyId" type="SignaturePolicyIdType"/>

 <xsd:element name="SignaturePolicyImplied" type="AnyType"/>

 </xsd:choice>

 </xsd:complexType>

 The “type” attribute has been added, otherwise a warning message would be
produced.

 <xsd:complexType name="CommitmentTypeIndicationType">

 <xsd:sequence>

 <xsd:element name="CommitmentTypeId" type="ObjectIdentifierType"/>

 <xsd:choice>

 <xsd:element name="ObjectReference" type="xsd:anyURI"

 maxOccurs="unbounded"/>

 <xsd:element name="AllSignedDataObjects" type="AnyType"/>

 </xsd:choice>

 <xsd:element name="CommitmentTypeQualifiers"

 type="CommitmentTypeQualifiersListType" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 The data type of signer’s role has been changed to string due to implementation
issues (otherwise the source code generated from the schema would later have to
be altered).

<xsd:complexType name="ClaimedRolesListType">

SK-CPP-PRG-GUIDE

Libdigidocpp Programmer’s Guide

AS Sertifitseerimiskeskus (Certification Centre Ltd.) Page 49 / 49

 <xsd:sequence>

 <xsd:element name="ClaimedRole" type="AnyTypexsd:string" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

